
Journal of Economic Dynamics & Control 148 (2023) 104617 

Contents lists available at ScienceDirect 

Journal of Economic Dynamics & Control 

journal homepage: www.elsevier.com/locate/jedc 

Numerical Solution of Dynamic Quantile Models 

� 

Luciano de Castro 

a , Antonio F. Galvao 

b , ∗, Andre Muchon 

c 

a Department of Economics, University of Iowa, United States 
b Department of Economics, Michigan State University, United States 
c Möbius Capital and IMPA, United States 

a r t i c l e i n f o 

Article history: 

Received 15 September 2022 

Revised 12 December 2022 

Accepted 9 February 2023 

Available online 11 February 2023 

JEL classification: 

C61 

C63 

Keywords: 

Quantile preferences 

Dynamic programming 

Value function iterations 

a b s t r a c t 

This paper studies dynamic programming for quantile preference models, in which the 

agent maximizes the stream of the future τ -quantile utilities, for τ ∈ (0 , 1) . We suggest 

numerical methods, based on value function iterations, for solving the quantile recursive 

dynamic programming, and computing value and policy functions. In addition, we extend 

theoretical results to allow the dynamic quantile model to have a finite-horizon, instead of 

infinite-horizon. To illustrate the methods, we use an intertemporal consumption quantile 

model that has an explicit closed form solution for both the value and policy functions. 

Based on this example, we assess the accuracy of the numerical methods by computing 

and comparing theoretical and numerical value and policy functions, for several combina- 

tions of the parameters – discount factor, elasticity of intertemporal substitution, and risk 

attitude, which is measured by the quantile. Results document evidence that the suggested 

algorithm provides numerical solutions that are very close to theoretical counterparts, and 

also illustrate the usefulness and practicality of the proposed methods. 

© 2023 Elsevier B.V. All rights reserved. 

 

1. Introduction 

The dynamic programming framework has been extensively used in economic modeling because it is sufficiently rich 

to deal with most problems involving sequential decisions over time and under uncertainty. 1 Recently, de Castro and Gal- 

vao (2019) proposed a new infinite-horizon dynamic model for an economic agent, who, when selecting among uncertain 

alternatives, chooses the one with the highest τ -quantile of the stream of future utilities for a fixed τ ∈ (0 , 1) , instead of

the standard expected utility. This quantile preference model is tractable, simple to interpret, and allows for separation 

between risk aversion and elasticity of intertemporal substitution. Moreover, some quantile dynamic models have closed 

form solutions which are not available for their expectation counterpart. 2 The quantile model also possesses all the de- 
� The authors would like to express their appreciation to Hidehiko Ichimura and Manuel Santos for helpful comments and discussions. Luciano de Castro 

acknowledges the support of the National Council for Scientific and Technological Development – CNPq. Computer programs to replicate the numerical 

analyses are available from the authors. All the remaining errors are ours. 
∗ Corresponding author. 

E-mail address: agalvao@msu.edu (A.F. Galvao). 
1 There is an extensive literature on dynamic nonlinear rational expectation models. The great majority of models of dynamic maximization employ the 

expected utility and have been workhorses in several economic fields. We refer the reader to more comprehensive works, such as Stokey et al. (1989) and 

Ljungqvist and Sargent (2012) . Another related segment of the literature studies recursive utilities. We refer the reader to Epstein and Zin (1989) , 

Marinacci and Montrucchio (2010) , Bommier et al. (2017) , among others. 
2 Rostek (2010) discusses several advantages of the static quantile preference, such as robustness, ability to deal with categorical (instead of continuous) 

variables, and the flexibility of offering a family of preferences indexed by quantiles. 
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sirable standard properties of recursive models. In particular, it is dynamically consistent, and the principle of optimality 

holds. Moreover, the corresponding dynamic problem yields a value function, via a fixed point argument, the value func- 

tion is monotone, concave, and differentiable, and it is also possible to derive the corresponding Euler equation. There is a

growing literature on economic models using quantile preferences, see, e.g., among others, Manski (1988) , Chambers (2007, 

20 09) , Bhattacharya (20 09) , Rostek (2010) , Giovannetti (2013) , Long et al. (2021) , Baruník and Čech (2021) , He et al. (2021) ,

de Castro et al. (2022a) , and Baruník and Nevrla (2022) . 

Solving dynamic stochastic optimization problems numerically is very important in practice. There is a large litera- 

ture discussing numerical solutions for dynamic economic models under uncertainty. For reviews of methods for numer- 

ically solving intertemporal economic models, see, among others, Taylor and Uhlig (1990) , Rust (1996, 2008) , Gaspar and

Judd (1997) , Judd (1998) , Marimon and Scott (1999) , Santos (1999) , Christiano and Fisher (20 0 0) , Miranda and Fackler (2002) ,

Adda and Cooper (2003) , Aruoba et al. (20 06) , Stachursky (20 09) , Den Haan (2010) , Kollmann et al. (2011) , Ljungqvist and

Sargent (2012) , Miao (2013) , and Maliar and Maliar (2014) . Most of the available existing methods work with the ex-

pected utility case. Nevertheless, quantiles are nonlinear operators, which precludes the use of some simplifications that 

are only valid for expectations. Recently, numerical computation using recursive preferences together with non-linearity has 

received attention – see, e.g., Caldara et al. (2012) and van Binsbergen et al. (2012) for applications of Epstein and Zin (1989,

1991) preferences to DSGE models. Solving these models numerically may be a challenge. 

This paper extends the literature in two fronts. First, we extend existing theoretical results on the intertemporal quantile 

model in an important dimension that is useful to applied work. We allow the model to have a finite-horizon instead of

being restricted to infinite-horizons. We show that, in the finite case, the sequence of corresponding value-functions is well- 

defined. Finite-horizon problems are often encountered in making life-cycle planning decisions on optimal consumption, 

savings, portfolio choice, etc. This is a significant extension since it allows for applications of many more realistic models. 

Second, we suggest numerical methods for solving the dynamic stochastic programming for quantile recursive models 

based on value function iterations. The numerical solution provides a link between the theory for quantile dynamic pro- 

gramming and empirical analyses of dynamic optimization problems. The need for numerical tools arises from the fact that, 

in general, dynamic programming problems do not possess tractable closed form solutions. Hence, numerical techniques 

must be used to approximate their solutions. In particular, we suggest a procedure based on value function iterations where 

the main difference with standard methods is that one is required to compute the conditional τ -quantile of the value func-

tion, instead of the conditional average. We note that, for the standard conditional expectation case, given a particular state 

and conditional probabilities in the transition matrix, the conditional average is easily obtained by calculating the sample 

average over the states using the corresponding probabilities. For the quantile model, the calculation of the conditional τ - 

quantile is also simple. Given the conditional probabilities for the current shock, the state, and the choice, one orders all

the possible future value function outcomes, and sums the corresponding probabilities from the lowest value to the highest, 

until the sum of probabilities is at least the given τ ∈ (0 , 1) . 3 

Numerical methods are provided for both the finite and infinity horizon cases. Both algorithms use the Bellman equa- 

tion to compute the value function. For the former case, backward iterations on an initial guess are employed. In the latter

case, the value function is iterated until convergence occurs. In this paper, we focus on the case that the shock is dis-

crete with a Markov transition matrix. Nevertheless, we provide a brief discussion on an extension of the algorithm to the

continuous shock case using the Tauchen (1986) finite state Markov-chain approximation. 

We provide results assessing the accuracy of the proposed numerical methods and illustrating its practicality. To do so, 

we use a simple intertemporal consumption model where the economic agent is characterized by quantile preferences and 

decides on the intertemporal consumption and savings (assets to hold) over time, subject to a linear budget constraint. This 

model is characterized by three parameters — discount factor, elasticity of intertemporal substitution (EIS), and risk attitude. 

Notice that in quantile models, the risk attitude is captured by the quantile τ , while the other two parameters play a similar

role to those in dynamic expected utility models. However, in the standard expected utility, the EIS is indissociable from risk

aversion. 4 de Castro et al. (2022b) derive explicit algebraic closed form solutions for the value and policy functions for this

intertemporal consumption model. 5 Hence, we are able to calculate these functions both theoretically and numerically, for 

different value of the parameters. We are then able to evaluate the performance of the numerical procedures by comparing 

the results for the numerical computation with the corresponding closed form solutions. 

To compute the intertemporal consumption quantile model, numerically and theoretically, we specify an isoelastic utility 

function and calculate the value and asset allocation policy functions for several combinations of the parameters, as well 

as different probabilities in the transition matrices, using independent and identically distributed (iid) and Markov shocks. 

Results from these exercises show evidence that the suggested numerical methods to solve the dynamic quantile model 

approximate the theoretical solutions very closely, and provide a high degree of accuracy. Hence, researchers applying this 

solution algorithm can be confident that their quantitative answers are sound. 
3 Notice that the computation of the conditional quantile here is different from quantile regression methods. We refer the reader to Koenker (2005) and 

Koenker et al. (2018) for reviews of quantile regression methods. 
4 It has been well documented in the literature that it is not possible to separate the intertemporal substitution from the risk attitude parameters when 

using standard dynamic models based on the EU (see, e.g., Hall, 1978; 1988 ). 
5 Existence of closed form expressions for the intertemporal consumption framework is an advantage of the quantile model. Nevertheless, we note that 

not all quantile dynamic models have closed form solutions. Thus, the suggested numerical algorithm is an useful tool for more general models. 
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To illustrate the usefulness and practicality of the proposed methods, we compare numerical results for the quantile 

model with the standard expected utility case. We use different parametrizations that change probabilities of the shock, 

the risk aversion, and the EIS. For each design, we compute the asset allocation decision rule and the value function. These

exercises illustrate several interesting features of the dynamic quantile model. First, we verify that both value and policy 

functions are monotone increasing. Second, results illustrate the flexibility and practicality of the quantile framework. The 

quantile model is characterized by three parameters, while the standard expected utility is only characterized by two pa- 

rameters. Thus, in the quantile case, for a given discount factor, asset allocation varies with both risk attitude and EIS.

When EIS > 1 , asset allocation is relatively smaller for a more risk averse agent ( τ = 0 . 25 ) compared to a less risk averse

( τ = 0 . 75 ). On the other hand, for EIS < 1 , the volume of assets bought for the next period (savings) is relatively larger for

a more risk averse agent ( τ = 0 . 25 ) compared to a less risk averse ( τ = 0 . 75 ). As EIS decreases, the responsiveness of the

growth rate of consumption to the real interest rate decreases. If consumption is less responsive to changes, savings is more

responsive. Thus, the asset allocation increases for all quantiles, but it increases relatively more for a more risk averse agent.

This illustrates the advantage of being able to separate risk and EIS, and hence evaluate effects of changing EIS on next

period asset allocation decisions, while maintaining risk attitudes constant. 

Finally, we simulate the intertemporal consumption model. Applied economists often characterize the behavior of the 

model through statistics from simulated paths of the economy. We simulate the model for 10,0 0 0 periods and compute

density functions of the allocation of asset savings for the next period for different combinations of parameters. Results 

show large heterogeneity in the distributions across different risk attitudes and EIS. 

The remainder of the paper is structured as follows. Section 2 reviews the dynamic quantile model. Section 3 presents the

general infinite-horizon model, and its numerical algorithm for computation. Section 4 studies the finite-horizon quantile 

model, and its corresponding numerical algorithm for computation. Section 5 provides numerical results using the intertem- 

poral consumption model as an example. We assess the numerical performance of the computational algorithms, compare 

results with the standard expected utility model, and provide simulation results. Finally, Section 6 concludes. 

2. The recursive quantile model 

This section describes the dynamic quantile model introduced by de Castro and Galvao (2019) , whose numerical im- 

plementation is the main object of the current paper. In Section 2.2 below, we specialize this model to a simple standard

consumption-based economy model in order to illustrate some features of the general model. Moreover, later in the pa- 

per, we return to this example to assess the performance of the numerical methods as well as to exemplify the proposed

methods. The general quantile model is further analyzed in Section 3 . 

2.1. The quantile model 

Let x t ∈ X and z t ∈ Z denote, respectively, the state and the shock in period t , both of which are known by the decision

maker (DM) at the beginning of period t , where X is the set of possible states and Z is the set of shocks. 

For simplicity, we assume that the set of shocks is finite, that is, Z ≡ { s 1 , . . . , s k } . 6 The random shocks will follow a time-

invariant (stationary) Markov process, defined by the stochastic matrix P = 

(
p i j 

)
k ×k 

, that is, the probability of moving from 

state s i to state s j is Pr (s j | s i ) = p i j . 

Let y t ∈ Y denote the choice that the agent makes at time t , where the choice set Y can finite or infinite. Given the state

x t and the shock z t , the DM chooses y t ∈ �(x t , z t ) ⊆ Y ⊆ R 

q , where � : X × Z ⇒ Y is the budget set correspondence. 

The period t utility is given by u (x t , y t , z t ) , where u : X × Y × Z → R is a utility function. Given current period state x t ,

choice y t and the next period’s shock z t+1 , the next state x t+1 is defined by the transition function σ : X × Y × Z → X , that

is, 

x t+1 = σ (x t , y t , z t+1 ) . (1) 

In other words, this function determines the next period state variable x t+1 as function of the current state x t , the choice

y t , and the shock z t+1 realized at the beginning of period t + 1 . The simplest case is, of course, when the decision maker

chooses directly the next period state, that is, y t = x t+1 or x t+1 = σ (x t , y t , z t+1 ) = y t . A natural example of this case occurs

if x t is the amount of asset holdings at the beginning of period t and y t is how much asset is bought in period t and held

for period t + 1 . Stokey et al. (1989 , p. 239–240) uses the following example to illustrate cases in which the next state is

influenced by the shock and a more elaborate transition function σ is required. 

Example 1. There is one good (corn), which can be consumed or stored to be used as seed in the next period. The state in

period t is the amount of corn x t that is available to be planted. Once planted, this seed yields f (x t ) , where f is a production

function. The choice in period t is how much to store for next period, y t . Thus, the consumption is c t = f (x t ) − y t . There is
6 Dynamic quantile preferences can be modeled with an abstract set of shocks, in which Z is only required to be a metric space, as de Cas- 

tro et al. (2022b) show. However, in this general setting some measurability and regularity conditions for the conditional probabilities are required. Since 

the focus of this paper is on numerical methods, which require discretization in any case, we avoid these technicalities and work directly with the discrete 

case. We briefly discuss an extension to continuous shocks in Remark 1 . 

3 
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a population of mice in the storehouse that may consume part of the corn, but whose size is stochastic. Assume that the

effect of mice is additive, that is, the next period state x t+1 will be the amount stored y t , minus the amount affected by the

mice, z t+1 . In this case, we have: 

x t+1 = σ (x t , y t , z t+1 ) = y t − z t+1 ;
u (x t , y t , z t ) = U[ f (x t ) − y t ] 

�(x t , z t ) = [0 , f (x t )] . 

In order to complete the definition of the dynamic quantile preference model, we need to define quantiles. Recall that 

if the cumulative distribution function (c.d.f.) F X of a random variable X is invertible, then its τ -quantile is simply the 

preimage of τ ∈ (0 , 1) , that is, Q τ [ X] = F −1 
X 

(τ ) . Since we are working with discrete shocks, the c.d.f. will not be invertible

and we can define the quantile as a number between sup { x ∈ R : F X (x ) � τ } and inf { x ∈ R : F X (x ) � τ } . Following the usual

convention (see Koenker (2005) , for instance), we will adopt the second definition. Therefore, the τ -conditional quantile of 

a random variable X given current shock z t , for τ ∈ (0 , 1) is defined as: Q τ [ X| z t ] ≡ inf { x ∈ R : Pr [ X � x | z t ] � τ } . We will use

this definition in the case that X = g(z t+1 ) for a function g : Z → R of next period shock z t+1 . In this case, the probability

Pr [ X � x | z t ] is just the sum 

∑ 

j∈ A x p i j , for A x ≡ { j ∈ { 1 , . . . , k } : g(s j ) � x } , provided that z t = s i . 

In the general dynamic quantile model, the intertemporal choices can be represented by the maximization of a value 

function V : X × Z → R that satisfies the recursive equation: 

V (x t , z t ) = max 
y t ∈ �(x t ,z t ) 

x t+1 = σ (x t ,y t ,z t+1 ) 

{ 

u ( x t , y t , z t ) + βQ τ [ V (x t+1 , z t+1 ) | z t ] 
} 

. (2) 

In this problem, Q τ [ · | ·] is the τ -conditional quantile function for τ ∈ (0 , 1) , V (·, ·) is the value-function, the quantile-

τ is given, β ∈ (0 , 1) is the discount factor and u : X × Y × Z → R is the utility function. The information set at time t is

simply z t . 

Now we state the main assumptions used for establishing the properties of the model. 

Assumption 1. The following properties are maintained throughout the paper: 

(i) X , Y and Z are metric spaces; 

ii) Z is either connected or finite and the { z t } follows a Markov process with transition matrix P = (p i j ) k ×k or fixed p.d.f.

f (z t+1 | z t ) ; 
ii) σ : X × Y × Z → R + is continuous; 

v) u : X × Y × Z → R is continuous and bounded; 

v) The correspondence � : X × Z ⇒ Y is continuous, with nonempty, compact and convex values. 

The above conditions are all standard in the literature, see e.g. Stokey et al. (1989) . Assumption 1 (i ) allows the state,

choice, and shock sets to me metric spaces. Assumption 1 (ii ) allows for the shocks to be either discrete or continuous. The

restrictions in Assumptions 1 (i v ) and (v ) on the utility and budget functions, respectively, are standard in the literature.

Finally, Assumption 1 (iii ) restricts the transition function in equation (1) to be continuous and bounded. This is a weak

condition, and is in general satisfied in standard model, as we further discuss and illustrate below. Indeed, in the next

section, we introduce an intertemporal consumption model with quantile preferences that illustrates the usefulness and 

flexibility of this framework. In particular, it shows how Assumption 1 is naturally satisfied. 

2.2. Intertemporal consumption 

We illustrate the above model with the intertemporal consumption dynamic model analyzed by de Castro et al. (2022b) .

This model adapts the standard intertemporal consumption and life-cycle analysis introduced in Modigliani and Brum- 

berg (1954) to the dynamic quantile preference. This framework is particularly interesting, since it is possible to show that 

it leads to closed form solutions, which allow us to compare analytical solutions with numerical results obtained from the 

proposed methods. This is implemented in Section 5 . 

The state x t is the amount invested in a risky asset in period t − 1 and z t is the return that this asset yields in period

t . Thus, at the beginning of period t , the DM has x t z t to consume or save for the next period. If the DM saves x t+1 , the

consumption is x t z t − x t+1 . In this case, we have: 

x t+1 = σ (x t , y t , z t+1 ) = y t ;
u (x t , y t , z t ) = U(x t z t − y t ) 

�(x t , z t ) = [0 , x t z t ] . 

Thus, we can substitute y t for x t+1 and write the recursive equation (2) simply as: 

V (x t , z t ) = max 
x t+1 ∈ [0 ,x t z t ] 

{ 

U ( x t z t − x t+1 ) + βQ τ [ V (x t+1 , z t+1 ) | z t ] 
} 

. 

We discuss the economic interpretation of this model in more detail in Section 5.3 below. Notice that Assumption 1 is

satisfied, provided that the utility function U is continuous. 
4 
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2.3. Remarks on the dynamic quantile model 

The general theoretical properties of the model in (2) are established in de Castro et al. (2022b) ; see also de Castro and

Galvao (2019) . They show that the quantile model possesses all the desirable standard properties of recursive models. In 

particular, the model is dynamically consistent, and the principle of optimality holds. The optimization problem leads to a 

contraction, which therefore has a unique fixed point. This fixed point is the value function of the problem and satisfies

the Bellman equation. They also prove that the value function is concave and differentiable, thus establishing the quantile 

analog of the envelope theorem. Additionally, they derive the corresponding Euler equation. 

The interpretation of the recursive problem in (2) is very similar to the standard expected utility model. The value func-

tion at time t is equal to the utility of consumption at time t plus the discounted value of the τ - quantile – instead of the

expectation – of the value function at time t + 1 . 

For detailed discussions on axiomatization and risk attitude of the dynamic preferences see de Castro and Galvao (2022) .

The risk attitude of a quantile maximizer is captured by τ in static models (see, e.g., Manski (1988) and Rostek (2010) ). Using

the notion of quantile-preserving spread introduced by Mendelson (1987) , de Castro and Galvao (2022) adapt the definition 

of risk for dynamic models in Epstein and Zin (1989) to show that the single dimensional parameter τ ∈ (0 , 1) captures the

risk attitude in dynamic quantile models. Hence, this model admits a notion of comparative risk attitude, where an agent 

with quantile given by τ1 is more risk preferring than another agent with quantile given by τ2 if τ1 > τ2 , independently of

the functional form of the utility function. 

An important property of the dynamic quantile model above is that it allows for separation between risk aversion and 

elasticity of intertemporal substitution (EIS). The EIS is determined by the concavity of the utility function, exactly as in a

model without risk or uncertainty. The concavity of the utility function has no bearing on the risk attitude of a quantile

maximizer because single period quantile preferences are invariant to the utility function. For more details, see discussion 

on de Castro and Galvao (2019) or de Castro and Galvao (2022) . 

3. Infinite-Horizon quantile model and computation 

This section considers a general quantile dynamic model for infinity-horizon and provides numerical methods using value 

function iterations to solve the model numerically. 

3.1. Quantile value function representation 

We start by establishing the existence of the value function for the infinite-horizon problem. Let C denote the set of 

functions v : X × Z → R . Since X and Z are finite, these functions are necessarily continuous. We endow the set C with the

supnorm, that is, for any v ∈ C, we define 

‖ v ‖ = sup 

(x,z) ∈X×Z 
| v (x, z) | . (3) 

Endowed with this norm, C is a Banach space. 7 

We want to find a function v τ ∈ C that represents the continuation utility value for the decision maker (DM) that maxi-

mizes a τ -quantile. That is, given state x ∈ X and shock z ∈ Z , v τ (x, z) represents the utility value that the DM attributes to

the initial point (x, z) . Let w ∈ Z denote the shock next period. Notice that in this case, the DM will choose y ∈ �(x, z) and

the next period state will be x ′ = σ (x, y, w ) , when the next period shock w is realized. The value v τ (x ′ , w ) will represent the

value in the next period. Since y is chosen optimally, the value function has to satisfy the following consistency equation: 

v τ (x, z) = sup 

y ∈ �(x,z) 

{ 

u ( x, y, z ) + βQ τ [ v τ (x ′ , w ) | z] 

} 

(4) 

= u ( x, y ∗, z ) + βQ τ [ v τ (σ (x, y ∗, w ) , w ) | z] , 

where y ∗ ∈ �(x, z) is the optimal choice, that realizes the supremum on the right. Notice that the only difference with

respect to the standard expected utility problem is the use of the τ -quantile operator Q τ [ ·] in place of the expectation

operator E [ ·] . Despite this difference, we can use the standard method to find the value function v that satisfies (4) , as we

show now. 

As usual, we have to define a transformation T τ : C → C, whose fixed point will be the value function satisfying (4) . In-

deed, given v ∈ C, we define a function T τ (v ) ∈ C by defining its value in each (x, z) ∈ X × Z through the following equation:

T τ (v )(x, z) ≡ sup 

y ∈ �(x,z) 

{ 

u ( x, y, z ) + βQ τ [ v (σ (x, y, w ) , w ) | z] 

} 

. (5) 

Fortunately, as in the expected utility case, this transformation is a contraction and has a fixed point. This is established

by the following: 
7 In fact, since |X | = p and |Z| = k , C can be identified with R p·k . 

5 
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Lemma 1. Under Assumption 1 , T τ is a contraction with modulus β , that is, ∀ v , v ′ ∈ C

‖ T τ (v ) − T τ (v ′ ) ‖ � β‖ v − v ′ ‖ . (6) 

Therefore, T τ has a unique fixed-point v τ ∈ C, that is, T τ (v τ ) = v τ . 

Proof. See Appendix A.1 . �

Notice that the equation T τ (v τ ) = v τ above is just another way of rewriting (4) . Thus, the unique fixed point of the

problem is the value function of the problem. Lemma 1 follows from de Castro et al. (2022b) . 

It is useful to illustrate how we can use the above result to find the value function. Let us say that we pick up any

arbitrary value function v ∈ C (it can even be a constant function). Put v 0 = v and define v 1 = T τ (v 0 ) , that is, obtain the

function defined from v 0 by using the operator T τ . Then, repeat this procedure: assuming that we have obtained v n , define

v n +1 = T τ (v n ) , that is, 

v n +1 (x, z) ≡ sup 

y ∈ �(x,z) 

{ 

u ( x, y, z ) + βQ τ [ v n (σ (x, y, w ) , w ) | z] 

} 

. (7) 

This procedure will eventually lead to the value function. More formally, we have the following: 

Proposition 1. Under Assumption 1 , for any v ∈ C, define v 0 = v and, for n = 0 , 1 , 2 , . . . , define recursively v n +1 = T τ (v n ) as in

(7) . Then, v τ = lim n →∞ 

v n , where v τ is the unique fixed point of T τ . Moreover, 

‖ v n − v τ‖ � βn ‖ v 0 − v τ‖ . 

Proof. See Appendix A.1 . �

Proposition 1 follows from de Castro and Galvao (2019 , Theorem 3.11, p. 1913). Next, we provide a numerical algorithm

to compute a solution for this problem. 

3.2. Algorithm to compute the value and policy functions 

The traditional method of solving dynamic stochastic optimization problem with expected valuation is through “Value 

Function Iterations.” This method is known to work with the Bellman equation to compute the value function iterations 

on an initial guess until convergence. While sometimes slower than competing methods, it is trustworthy in that it reflects 

the result, stated in Lemma 1 and Proposition 1 , that under certain conditions, the solution of the Bellman equation can

be reached by iterating the value function starting from an arbitrary initial value. The main different ingredient in our 

proposal is the computation of the conditional τ -quantile instead of the conditional average, in Step 3 below. This is simple

to calculate in practice. Given conditional probabilities for the current shock, the state, and the choice, one orders all the

possible future value function outcomes, and sums the corresponding probabilities from the lowest value to the highest, 

until the sum of probabilities is at least τ ∈ (0 , 1) . 

First, we describe how to proceed to find a numerical estimate of the value function v τ for the general model described

above. This is given in Steps 1–5. 

1. Functional forms and parameters. Choose the model and the functional form for the utility function u : X × Y × Z → R ,

the budget set � : X × Z → Y , the transition function σ : X × Y × Z → X and stochastic transition matrix P . 

(a) Choose the value of the parameters of the functional form. The parameters can be taken from a grid of possible

values. 

(b) Choose the initial value function v : X × Z → R . This can be a constant function v (x, z) = 0 , for instance. 

(c) This leads to the function g : X × Y × Z × Z → R defined by 

g(x, y, z, w ) ≡ u ( x, y, z ) + βv (σ (x, y, w ) , w ) . (8) 

2. Discretize and initialize variables. Represent the functions through matrices or arrays and initialize the variables of the 

algorithm. 

(a) Fix X = { a 1 , . . . , a p } and Z = { s 1 , . . . , s k } . 
(b) Initialize the stochastic transition matrix P = ( P [ i, j] ) k ×k so that P [ i, j] = p i j for each (i, j) ∈ { 1 , . . . , k } 2 . 
(c) Fix a discretization for Y = { b 1 , . . . , b q } . 
(d) Represent the function u : X × Y × Z → R by a p × q × k array U = (U[ i x , i y , i z ]) p×q ×k , defined for each (i x , i y , i z ) ∈

{ 1 , . . . , p} × { 1 , . . . , q } × { 1 , . . . , k } , 
U[ i x , i y , i z ] ≡ u 

(
a i x , b i y , s i z 

)
. 

(e) Represent the function σ : X × Y × Z → X by a p × q × k array of integers N = (S[ i x , i y , i w 

]) p×q ×k , defined for each

(i x , i y , i w 

) ∈ { 1 , . . . , p} × { 1 , . . . , q } × { 1 , . . . , k } , 
S[ i x , i y , i w 

] = j ∈ { 1 , . . . , p} if a j = σ
(
a i x , b i y , s i w 

)
. 

(f) Represent v : X × Z → R by a p × k matrix W = (W [ i x , i z ]) p×k , defined for each (i x , i z ) ∈ { 1 , . . . , p} × { 1 , . . . , k } , (
i x i z 

)

W [ i x , i z ] ≡ v a , s . 

6 
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(g) Initialize the array G = 

(
G [ i x , i y , i z , i w 

] 
)

p×q ×k ×k 
, defined for each (i x , i y , i z , i w 

) ∈ { 1 , . . . , p} × { 1 , . . . , q } × { 1 , . . . , k } ×
{ 1 , . . . , k } by G [ i x , i y , i z , i w 

] = 0 . 

(This records the value of the function g defined in (8) .) 

(h) Initialize the array H = 

(
H[ i x , i y , i z ] 

)
p×q ×k 

, defined for each (i x , i y , i z ) ∈ { 1 , . . . , p} × { 1 , . . . , q } × { 1 , . . . , k } by

H[ i x , i y , i z ] = 0 . (This records the quantile of g in (8) .) 

(i) Compute the budget set �(x, z) and record them as B = (B [ i x , i y , i z ]) p×q ×k defined by: 

B [ i x , i y , i z ] = 

{
1 , if b i y ∈ �(a i x , s i z ) 
0 , otherwise 

(j) Initialize the array Y = ( Y [ i x , i z ] ) p×k , defined for each (i x , i z ) ∈ { 1 , . . . , p} × { 1 , . . . , k } by Y [ i x , i z ] = 1 . (This records the

optimal policy function.) 

3. Compute the conditional τ -quantile. For each (x, y, z) , obtain the τ -quantile of g(x, y, z, w ) with respect to w : 

(a) Make the value function v equal to the candidate: V = W . 

(b) Obtain the function g : X × Y × Z × Z → R , that is, for each (i x , i y , i z , i w 

) ∈ { 1 , . . . , p} × { 1 , . . . , q } × { 1 , . . . , k } ×
{ 1 , . . . , k } define 

G [ i x , i y , i z , i w 

] ≡ U[ i x , i y , i z ] + βV [ S[ i x , i y , i w 

] , i w 

] . 

(c) For each (i x , i y , i z ) , order G [ i x , i y , i z , ·] to obtain i (1) 
w 

, i (2) 
w 

, . . . , i (k ) 
w 

∈ { 1 , ., k } so that 

G [ i x , i y , i z , i 
(1) 
w 

] � G [ i x , i y , i z , i 
(2) 
w 

] � . . . � G [ i x , i y , i z , i 
(k ) 
w 

] . 

(d) For each (i x , i y , i z ) , find the lowest j ∈ { 1 , ., k } for which 

P [ i z , i 
(1) 
w 

] + · · · + P [ i z , i 
( j) 
w 

] � τ. 

(e) Define the array H = 

(
H[ i x , i y , i z ] 

)
p×q ×k 

, defined for each (i x , i y , i z ) ∈ { 1 , . . . , p} × { 1 , . . . , q } × { 1 , . . . , k } by 

H[ i x , i y , i z ] = G [ i x , i y , i z , i 
( j) 
w 

] . 

4. Compute the maximum value function and save the optimal policy. For each (x, z) , find y that maximizes 

Q τ [ g(x, y, z, w ) | z] . 

(a) For each (i x , i z ) , maximize j �→ H[ i x , j, i z ] , that is, find i ∗y ∈ { 1 , . . . , q } such that 

H[ i x , i 
∗
y , i z ] = max 

1 � j� q,B [ i x , j,i z ]=1 
H[ i x , j, i z ] . 

(b) Define Y [ i x , i z ] = i ∗y . 
5. Check convergence. Obtain the function T τ (v ) (recorded as W ) and test whether it is already a good approximation of

v τ
(a) For each (i x , i z ) , define W [ i x , i z ] = H[ i x , i 

∗
y , i z ] . 

(b) Obtain the error 

e ≡ ‖ W − V ‖ = max 
(i x ,i z ) ∈{ 1 ,.,p}×{ 1 , ... ,k } 

∣∣W [ i x , i z ] − V [ i x , i z ] 
∣∣. 

(c) Compare the error e with the maximum error ε > 0 : if e > ε, repeat from item (3) above; otherwise, stop. 

After we have obtained the final value function, we find a numerical estimate of the corresponding optimal policy function. 

That is, once v τ is obtained, we can obtain, for each (x, z) , the optimal policy y ∗ that maximizes Q τ [ g t (x, y, z, w ) | z] . This can

be done using the following simple algorithm: 

a) Initialize the array Y = ( Y [ i x , i z ] ) p×k , defined for each (t, i x , i z ) ∈ { 1 , . . . , p} × { 1 , . . . , k } by Y [ i x , i z ] = 0 . (This records, after

the value function is found, the optimal policy y ∗t at time t as a function of (x, z) defined by (i x , i z ) .) 

b) For each (i x , i z ) , order H[ i x , · i z ] to obtain i ∗y such that 

H[ i x , i 
∗
y , i z ] = max 

1 � j� q,B [ i x , j,i z ]=1 
H[ i x , j, i z ] . 

c) Define Y [ i x , i z ] = i ∗y . 

3.3. Simulation of the model 

The last step is to simulate the path of the behavior and utility of the agent. For simplicity, we describe the algorithm for

the simulation only in the standard notation of Section 2 . Once we have obtained the value function v (x, z) policy function

y ∗(x, z) , we can simulate the model as follows, assuming that all the previous values are known and fixed: 

1. Choose the initial values. Fix the initial state (x 0 , z 0 ) , y 0 = y ∗(x 0 , z 0 ) , and the number of periods T in the simulation; 

2. Initialize values Fix t = 1 ; 

3. While t � T , do the following: 
7 
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(a) Given z t−1 , obtain z t using the stochastic transition matrix P = ( P [ i, j] ) k ×k and a random number generator. 

(b) Obtain x t = σ (x t−1 , y t−1 , z t ) ; 

(c) Obtain y t = y ∗(x t , z t ) ; 

(d) Put t = t + 1 . 

We present the following remarks before closing this section. 

Remark 1. If one is interested in continuous shocks, it is possible to follow the technique presented in Tauchen (1986) and

discretize Z in I points { z i } I i =1 
. In fact, one approximates an autoregressive process by a Markov chain. The method de-

termines the optimal discrete points { z i } and the transition matrix P = ( P [ i, j] ) k ×k = P rob(z t = z t−1 | z t−1 = z j ) such that the

Markov chain mimics an AR(1) process. Naturally, the approximation is only good if I is large enough. 

Remark 2. The previous algorithm is designed to accommodate general dynamic quantile models. In some specific situ- 

ations, one may use the Euler equation and/or implied constrains by the model to accelerate convergence and improve 

computing time (see, e.g., Caldara et al. (2012 , p.196)). 

4. Finite-Horizon quantile model and computation 

In this section, we first describe a general finite-horizon quantile dynamic model and show that the recursive model is 

well-defined. Second, we provide an algorithm that uses value function iterations to solve the model numerically. 

4.1. The sequence of value functions 

In order to introduce the stochastic model for finite-horizon, it is useful to recall first the deterministic finite time dy-

namic problem: 
T ∑ 

t=1 

βt u (x t , y t , z t ) , (9) 

where z t is constant (nonrandom). This model is suitable for the resolution by backward induction. Suppose that we are 

in the last period T and need to choose y T in order to maximize u (x T , y T , z T ) , that is, v T (x t , z t ) ≡ max y t ∈ �(x t ,z t ) 
u (x t , y t , z t ) .

In fact, we define recursively a sequence of value functions in the following manner. Put v T +1 (x, z) = 0 and for t = T , T −
1 , . . . , 1 , we define recursively: 

v t (x t , z t ) ≡ max 
y t ∈ �(x t ,z t ) 

{ 

u (x t , y t , z t ) + βv t+1 (x t+1 , z t+1 ) 
} 

, (10) 

where x t+1 = σ (x t , y t , z t+1 ) . Notice that the recursive definition (10) allows the choice to be made period by period. One

can show, however, that the choice can be equivalently done for the sequence of decisions. This is known as the Principle

of Optimality and implies that: 

v t (x t , z t ) = max 
{ y j } T j= t ,y j ∈ �(x j ,z j ) 

{ 

T ∑ 

j= t 
β j−t+1 u (x j , y j , z j ) 

} 

. (11) 

When t = 1 , the above equation is just the expression in (9) . Notice that (11) only holds because we are considering that z t 
is a constant in this paragraph, that is, the above corresponds to the nondeterministic case. 

We turn now to the stochastic case and extend this recursive definition to this setting by considering that the value

function for next period is evaluated through the quantile operator Q τ [ ·] . As before, define v T +1 (x, z) ≡ 0 and obtain 

v T (x T , z T ) = max 
y T ∈ �(x T ,z T ) 

{
u (x T , y T , z T ) + βQ τ [ v T +1 (x T +1 , z T +1 ) | z T ] } 

= max 
y T ∈ �(x T ,z T ) 

Q τ

[ 
u (x T , y T , z T ) + βv T +1 (x T +1 , z T +1 ) 

∣∣z T ] 
= max 

y T ∈ �(x T ,z T ) 
Q τ

[ 
u (x T , y T , z T ) 

∣∣z T ] 
= max 

y T ∈ �(x T ,z T ) 
u (x T , y T , z T ) 

= u (x T , y 
∗
T , z T ) , 

where x T +1 = σ (x T , y T , z T +1 ) and y ∗
T 

∈ �(x T , z T ) is the optimal y ∈ Y in the above problem. Notice that the quantile may be

dropped in the fourth line above because it is conditioned with respect to z T and there is no other random variable once z T 
is known. When we condition on z T −1 , however, z T is stochastic and the quantile cannot be dropped. We can, however, put

terms depending on z T −1 , such as u (x T −1 , y T −1 , z T −1 ) inside a quantile conditioning on z T −1 . This is done in the derivation

of v T −1 below: 

v T −1 (x T −1 , z T −1 ) = max 
y T−1 ∈ �(x T−1 ,z T−1 ) 

{
u (x T −1 , y T −1 , z T −1 ) + βQ τ [ v T (x T , z T ) | z T −1 ] } 
8 
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= max 
y T−1 ∈ �(x t ,z t ) 

Q τ

[ 
u (x T −1 , y T −1 , z T −1 ) + βv T (x T , z T ) 

∣∣z T −1 

] 
= max 

y T−1 ∈ �(x t ,z t ) 
Q τ

[ 
u (x T −1 , y T −1 , z T −1 ) + βu (x T , y 

∗
T , z T ) 

∣∣z T −1 

] 
= Q τ

[ 
u (x T −1 , y 

∗
T −1 , z T −1 ) + βu (x T , y 

∗
T , z T ) 

∣∣z T −1 

] 

= Q τ

[ 

T ∑ 

j= T −1 

β j−T +1 u (x j , y 
∗
j , z j ) 

∣∣z T −1 

] 

, 

where y ∗
T −1 

∈ �(x T −1 , z T −1 ) is the optimal choice and the next period state follows the law of motion σ . In the above

derivation, we are choosing y ∗
T −1 

for the period T − 1 , but the Principle of Optimality, mentioned above, shows that this is

equivalent to choose jointly (y ∗
T −1 

, y ∗
T −1 

) in the expression in the last line. 

We iterate another period to illustrate the composition of the quantile operator. Thus, adopting the same notation as 

above, we obtain v T −2 as follows: 

v T −2 (x T −2 , z T −2 ) ≡ max 
y T−2 ∈ �(x T−2 ,z T−2 ) 

{
u (x T −2 , y T −2 , z T −2 ) + βQ τ [ v T −1 (x T −1 , z T −1 ) | z T −2 ] } 

= Q τ

[ 
u (x T −2 , y 

∗
T −2 , z T −2 ) + βv T −1 (x T −1 , z T −1 ) 

∣∣z T −2 

] 

= Q τ

[ 

u (x T −2 , y 
∗
T −2 , z T −2 ) + β

{ 

Q τ

[ 

T ∑ 

j= T −1 

β j−T +1 u (x j , y 
∗
j , z j ) 

∣∣z T −1 

] } ∣∣z T −2 

] 

= Q τ

[ 

Q τ

[ 

T ∑ 

j= T −2 

β j−T +2 u (x j , y 
∗
j , z j ) 

∣∣z T −1 

] ∣∣∣z T −2 

] 

. 

Proceeding in this way, we can obtain v t , for t = 1 , ., T by: 

v t (x t , z t ) = Q τ

[ 

· · · Q τ

[ 

T ∑ 

j= t 
β j−t u (x j , y 

∗
j , z j ) 

∣∣z T −1 

] 

· · ·
∣∣∣z t 

] 

, 

where the · · · above represents the application of T − t operators Q τ , as well as corresponding conditionals on z j , for j =
t, . . . , T − 1 . It is useful to simplify the above expression using the notation Q 

T −t 
τ to denote the recursively application of

these conditional quantiles. That is, the above becomes: 

v t (x t , z t ) = Q 

T −t 
τ

[ 

T ∑ 

j= t 
β j−t u (x j , y 

∗
j , z j ) 

] 

. (12) 

As already mentioned above, the Principle of Optimality, established for recursive quantile preferences by de Castro and 

Galvao (2019 , Proposition 3.17, p.1915) guarantees that the choice of y ∗
j 

for each period j = t, . . . , T is equivalent to the

choice of the whole sequence { y j } T j= t at once. 

To sum up, once we set v T +1 ≡ 0 , the sequence of value functions v t can be recursively defined for t = T − 1 , . . . , 1 , by

the following equation: 

v t (x t , z t ) ≡ max 
y t ∈ �(x t ,z t ) 

{ 

u (x t , y t , z t ) + βQ τ

[
v t+1 (x t+1 , z t+1 ) | z t 

]} 

= max 
y t ∈ �(x t ,z t ) 

Q τ

[ 
u (x t , y t , z t ) + βv t+1 (x t+1 , z t+1 ) 

∣∣z t ] , (13) 

where x t+1 = σ (x t , y t , z t+1 ) . 

The above sequence of functions are well-defined, as the following result establishes. 

Proposition 2. Under Assumption 1 , the recursive definitions (13) are well-defined for t = T − 1 , . . . , 1 . 

Proof. See Appendix A.2 . �

The procedure described above leads naturally to an value function iteration algorithm to find the sequence of value 

functions. 

4.2. Algorithm to compute the sequence of value and policy functions 

Now we describe how to proceed to find a numerical estimate of the sequence of value functions v T , v T −1 , ., v 1 , v 0 de-

scribed above when shocks Z are discrete. This method is known to work from the Bellman equation to compute the value
9 
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function by backward iterations on an initial guess. As in the previous section, an important feature of the algorithm is the

computation of the conditional τ -quantile, step 3 below, instead of the conditional average. 

Since the method is similar to the infinite horizon case, below we only spell out the differences with respect to the

algorithm detailed in Section 4.1 . 

1. Functional forms and parameters. This steps follows exactly the one in the infinite case. 

2. Discretize and initialize variables. It is identical to the infinite case, up to item (e). The other ones should be modified

as follows: 

(f) Initialize as constant and equal to zero the sequence of value functions v t : X × Z → R , for t = 1 , . . . , T + 1 by a (T +
1) × p × k matrix V = (V [ t, i x , i z ]) (T +1) ×p×k , defined for each (t, i x , i z ) ∈ { 1 , . . . , T + 1 } × { 1 , . . . , p} × { 1 , . . . , k } , 

V [ t, i x , i z ] ≡ 0 . 

(g) Initialize the array G = 

(
G [ t, i x , i y , i z , i w 

] 
)
(T +1) ×p×q ×k ×k 

, which is defined for each element (t, i x , i y , i z , i w 

) ∈ { 1 , . . . , T +
1 } × { 1 , . . . , p} × { 1 , . . . , q } × { 1 , . . . , k } × { 1 , . . . , k } , as G [ t, i x , i y , i z , i w 

] = 0 . 

(h) Initialize the array H = 

(
H[ i x , i y , i z ] 

)
p×q ×k 

, defined for each (i x , i y , i z ) ∈ { 1 , . . . , p} × { 1 , . . . , q } × { 1 , . . . , k } , as

H[ i x , i y , i z ] = 0 . (This records the quantile of g t .) 

(i) Initialize the array Y = ( Y [ t, i x , i z ] ) T ×p×k , defined for each (t, i x , i z ) ∈ { 1 , . . . , T } × { 1 , . . . , p} × { 1 , . . . , k } by Y [ t, i x , i z ] =
0 . (This records the optimal policy y ∗t at time t as a function of (x, z) defined by (i x , i z ) .) 

(j) Compute the budget set �(x, z) and record them as B = (B [ i x , i y , i z ]) p×q ×k defined by: 

B [ i x , i y , i z ] = 

{
1 , if b i y ∈ �(a i x , s i z ) 
0 , otherwise 

(k) Define t = T . 

3. Compute the conditional τ -quantile. This is almost the same of the infinite case, with the only difference the need to

index by t , that is, we should use G [ t, i x , i y , i z , i w 

] instead of G [ i x , i y , i z , i w 

] . The details are thus omitted. 8 

4. Compute the maximum value function. This repeats the infinite case. 

5. Obtain the function v t . Finally, calculate function v t and repeat if t > 1 and stop, otherwise 

(a) For each (i x , i z ) , define V [ t, i x , i z ] = H[ i x , i 
∗
y , i z ] . 

(b) If t > 1 , put t ← t − 1 and repeat from item (3) above; otherwise, stop. 

5. Performance of the computational algorithm 

In this section, we first assess the accuracy and performance of the numerical algorithm. To do so, we use a quantile

recursive model for intertempotal consumption. In this case it is possible to compute an algebraic closed form solution for 

both the value and policy functions, as a function of given parameters. We, then, for the same set of parameters, simulate

the model using the numerical methods discussed previously. Finally, we are able to evaluate the accuracy and performance 

of the proposed numerical methods by comparing the algebraic and numerical solutions. 

We also use the intertemporal consumption model as an example to illustrate the numerical methods by computing the 

model for different parameters and comparing results with the standard expected utility. Finally, we simulate the model and 

compute the density functions of the allocation of asset savings for the next period. 

5.1. Intertemporal consumption 

We now return to the intertemporal consumption-based dynamic model introduced in Section 2.2 . This model appears 

in de Castro et al. (2022b) . This example is useful because in this case it is possible derive explicit formulas for the value

function, the optimal consumption and asset hold, as well as their corresponding paths. Thus, to assess the accuracy of the

proposed algorithm we compare the numerical results with the theoretical closed form solutions. 

Recall, from Section 2 , the following economy. At the beginning of period t , the decision-maker (DM) has x t ∈ X ⊂ R + 
units of the risky asset, with return z t ∈ Z ⊆ R ++ . With wealth x t z t at the beginning of period t , the DM decides the number

of units y t of the risk asset, which is equal to the next period’s state y t = x t+1 and c t = x t z t − y t is the amount consumed in

period t . From this, the next period how many units of the risky asset x t+1 is given by the law of motion σ : X × Y × Z → R ,

as follows: 

x t+1 = σ (x t , y t , z t+1 ) = y t . 

The dynamic problem of interest is to choose a sequence y t = x t+1 to maximize the following recursive equation: 

V (x t , z t ) = max 
x t+1 ∈ �(x t ,z t ) 

{ 

U(c t ) + βQ τ [ V (x t+1 , z t+1 ) | z t ] 
} 

, (14) 
8 The interpolation discussed in Appendix B can be used for the finite case here as well. 

10 
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where 

c t = x t z t − x t+1 , (15) 

�(x t , z t ) = [ 0 , x t z t ] is the budget set, and U : R + → R defines the utility function u (x t , y t , z t ) = U(x t z t − y t ) = U(c t ) . Consider

the following assumption. 

Assumption 2. The following hold: 

(i) X = [0 , ̄x ] ⊆ R + ; 
ii) Z ⊆ R ++ ; 
ii) U : R ++ → R is given by 

U(c) = 

c 1 −γ

1 − γ
, (16) 

where γ > 0 , γ � = 1 ; 

v) 0 < β < min { 1 , sup z∈Z z γ −1 } . 
Assumption 2 is standard in economic applications. It specifies the utility function and guarantees that the value func- 

tion converges. The consumption literature has often worked with an isoelastic utility function (constant elasticity of 

substitution–CES) also known as Constant Relative Risk Aversion (CRRA). 

The model in equations (14) –(15) , together with Assumption 2 , is simple and the DM decides on the stream of consump-

tion, which is equivalent to deciding on the future state x t+1 ∈ �(x t , z t ) . The optimization problem can be rewritten in the

following form 

V (x t , z t ) = max 
x t+1 ∈ [0 ,x t z t ] 

{
(x t z t − x t+1 ) 

1 −γ

1 − γ
+ βQ τ [ V ( x t+1 , z t+1 ) | z t ] 

}
. (17) 

The economic model in equation (17) is characterized by three parameters: the discount factor ( β), the risk attitude 

( τ ), and the parameter in the CES utility function ( γ ). The interpretation of the parameters is standard. The discount factor

characterizes consumer’s patience, is used to discount future payments of intertemporal utility functions, and allows to ob- 

tain the present value of future consumption. The risk attitude parameter – given by the quantile τ – describes consumer’s 

reluctance to substitute consumption across states of the world under uncertainty and is meaningful even in an atemporal 

setting. In the dynamic quantile model, the reciprocal of the parameter γ captures the elasticity of intertemporal substitu- 

tion (EIS). The EIS is defined as elasticity of consumption growth with respect to marginal utility growth. 9 As mentioned

previously, an important feature of the recursive quantile model is that it allows for the complete separation of the risk and

EIS parameters, while maintaining important properties as dynamic consistency and monotonicity. This is in sharp contrast 

with the standard expected utility case, where the model is characterized by only two parameters and the risk attitude 

cannot be disentangled from the EIS. 10 

5.2. Accuracy of numerical solutions 

5.2.1. Theoretical closed form solutions 

To assess the accuracy of numerical solutions, we first calculate the closed form solutions for the intertemporal consump- 

tion model. de Castro et al. (2022b) show that, under Assumptions 1 –2 , there exists a function V : X × Z → R satisfying (17) .

Moreover, it is shown that the unique value function is differentiable in x , strictly increasing in z, and the following Euler

equation holds: 

Q τ

[
β
(

c t+1 

c t 

)−γ

z t+1 

∣∣∣z t ] = 1 . (18) 

Although one is able to estimate this Euler equation using quantile regression methods, in this paper, we concentrate on 

computing numerical solutions to the value function directly. Here we also remark that Santos (1999) suggests to bound the

approximation error for any arbitrary solution based upon the computation of the Euler equation residuals. In particular, 

the result asserts that the approximation error of the policy function is of the same order of magnitude as that of the Euler

equation residuals, ε, whereas the approximation error of the value function is of order ε 2 . In this paper, although we are

able to compute the Euler equation as above, we take advantage from the fact of being able to compute explicit analytical

solutions for the model and evaluate the accuracy of the numerical methods using these closed form functions. 

In fact, de Castro et al. (2022b) derive explicit closed form expressions for the optimal asset allocation and consumption, 

as well as to the consumption path. In particular, let r τ,s (z) be defined recursively by 

r τ, 0 (z) = 1 , 
9 Under time separable utility, this definition is equivalent to the percent change in consumption growth per percent increase in the net interest rate. 
10 See Hall (1978, 1988) for discussions on the separation of these two parameters in the EU case. 

11 
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r τ,s (z) = r τ,s −1 ( Q τ [ w | z] ) · Q τ [ w | z] (s � 1) . (19) 

Given this, define the function: 

S(z) ≡
∞ ∑ 

s =1 

β
s 
γ [ r τ,s (z) ] 

1 −γ
γ . (20) 

Observe that S(z) depends on β, τ and γ . 

Proposition 3 (de Castro, Galvao, and Nunes (2022)) . Under monotone shocks and Assumption 2 , the unique value function

 : X × Z → R satisfying (17) is given by 

V (x, z) = 

1 

1 − γ
· x 1 −γ ·

[
( 1 + S(z) ) 

γ
z 1 −γ

]
. (21) 

Moreover, the optimal asset allocation y ∗ is interior and given by the policy function y ∗ : X × Z → Y: 

y ∗ = y ∗(x, z) = 

zS(z) 

1 + S(z) 
· x, (22) 

so that the consumption is given by 

c ∗ = c ∗(x, z) = 

z 

1 + S(z) 
· x. (23) 

Therefore, the optimal consumption path { c t } ∞ 

t=1 is given by 

c t+1 = m τ (z t , z t+1 ) · c t , (24) 

where 

m τ (z t , z t+1 ) ≡ S(z t ) 

1 + S(z t+1 ) 
· z t+1 . (25) 

Proposition 3 provides explicit closed form solutions for the value function, and optimal asset allocation and consump- 

tion. The optimal policy functions, in equations (22) and (23) , are linear functions of x . In particular, the optimal policy

rules, asset allocation and consumption, y ∗(x, z) and c ∗(x, z) , are functions of current state x multiplied by a factor that cap-

tures the uncertainty, given by the shock z, through the quantile. The uncertainty is resolved through the recursive quantile 

function r τ,s (z) in (19) . The expressions in (22) and (23) also show that the optimal asset allocation and consumption are

functions of the three parameters characterizing the model, the discount factor β , the EIS 1 /γ , and the risk attitude (quan-

tile) τ . 

If one assumes that the shocks are independent and identically distributed (iid), it is possible to specialize the above 

results as follows: 

Example 2 (The iid case) . If the shocks are independent, then Q τ [ w | z] becomes a constant, Q τ [ w ] , such that (19) reduces

to r τ,s = r τ,s (z) = Q τ [ w ] s . Similarly, let a τ,γ = β
1 
γ ( Q τ [ w ] ) 

1 −γ
γ . Then, 

1 + 

∞ ∑ 

s =1 

β
s 
γ [ r τ,s (z) ] 

1 −γ
γ = 1 + 

∞ ∑ 

s =1 

a s τ,γ = 1 + 

a τ,γ

1 − a τ,γ
= 

1 

1 − a τ,γ
, 

where | a τ,γ | < 1 by Assumption 2 . With this, the above results simplify to the following: 

V (x t , z t ) = 

(1 − a τ,γ ) −γ

1 − γ
(x t z t ) 

1 −γ , (26) 

x t+1 = a τ,γ x t z t , (27) 

c t = (1 − a τ,γ ) x t z t . (28) 

From Example 2 we have closed form solutions for the value function, as well as the asset allocation and consumption.

Hence, we are able to compute the value and policy functions numerically and compare them with these theoretical value 

to assess the performance of the proposed solution algorithm. 

5.2.2. Numerical procedures 

Now we illustrate the above algorithm using the consumption-based economy example as described above. Codes are 

written in Julia 1.8 . 
We specify the CRRA utility function, as described in equation (16) above. This is the only known primitive function in

the model. Recall that the reciprocal of the parameter γ captures the elasticity of substitution. 

For the consumption problem the primitive parameters are: (τ, β, γ ) . To solve for the value function, we need to assign

particular values to these parameters. 
12 
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Fig. 1. Value and Policy Function for γ = 0 . 80 and Grid p = q = 250 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. We choose the model and the functional form for the utility function u : X × Y × Z → R , the budget set � : X × Z → Y ,

the transition function σ : X × Y × Z → X as following: 

u : X × Y × Z → R given by u (x t , y t , z t ) = 

(x t z t − y t ) 1 −γ

1 − γ
;

� : X × Z → Y given by �(x t , z t ) = [0 , x t z t ] ;
σ : X × Y × Z → X given by σ (x t , y t , z t+1 ) = y t . 

2. Represent the functions through matrices or arrays and initialize the variables of the algorithm: 

(a) Consider a discretization for X = { x 1 , . . . , x p } and Y = { y 1 , . . . , y q } from zero to two with increments 1 /p and 1 /q . We

set different values for p = q ∈ { 250 , 500 , 1000 } . 
(b) We consider the following the stochastic transition matrix P [ i, j] = p i j : 

P = 

⎡ 

⎢ ⎢ ⎣ 

p 11 p 12 p 13 p 14 p 15 

p 21 p 22 p 23 p 24 p 25 

p 31 p 32 p 33 p 34 p 35 

p 41 p 42 p 43 p 44 p 45 

p 51 p 52 p 53 p 54 p 55 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 . 25 0 . 15 0 . 15 0 . 25 0 . 20 

0 . 25 0 . 15 0 . 15 0 . 25 0 . 20 

0 . 25 0 . 15 0 . 15 0 . 25 0 . 20 

0 . 25 0 . 15 0 . 15 0 . 25 0 . 20 

0 . 25 0 . 15 0 . 15 0 . 25 0 . 20 

0 . 25 0 . 15 0 . 15 0 . 25 0 . 20 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (29) 

Shocks assume the following values: Z = { 0 . 90 , 0 . 95 , 1 , 1 . 05 , 1 . 15 } . 
3. We specify the parameters as following: the discount factor β = 0 . 95 ; and quantile risk attitudes as τ = { 0 . 25 , 0 . 5 , 0 . 75 } .

We vary the EIS parameter as follows γ = { 0 . 8 , 1 . 25 } , such that the EIS = 1 /γ = { 1 . 25 , 0 . 8 } . 
Notice that the stochastic transition matrix, P , in equation (29) describes an iid process, such that we are able to compare

the numerical results with the theoretical functions in Example 2 . Also, we choose Z as given above such that Assumption

2 - (i v ) is satisfied for both EIS parameters. 

The accuracy evaluation procedure is as follows. First, using the specifications in the intertemporal consumption exam- 

ple above, for each point in the grid, we calculate the theoretical closed form solutions for value and policy functions in

equations (26) and (27) , respectively. Second, we apply the algorithm described in Section 3 to compute the same functions

numerically. Finally, we calculate the approximation error by subtracting the numerical solutions from the closed form solu- 

tions. To evaluate the accuracy of the numerical computations we calculate the average statistic of the approximation error 

over the evaluation points, as in Judd et al. (2017) . We present results in levels, and after standardizing the error, such that

the statistic is unit free. In latter case, we divide the difference by the value of the function under closed form solution.

Results are given in the next section. 

5.2.3. Results 

Results for assessing the accuracy of the numerical procedures relative to the theoretical derivations are provided for the 

two EIS values. Figures 1–3 collect the results for γ = 0 . 80 , and Figures 4–6 display results for γ = 1 . 25 , when varying the

grid. To avoid divergence we exclude zero from the grid. In each figure, we plot value functions and policy functions for the

allocation of asset savings for the next period computed with the numerical simulations in solid lines, and the theoretical 

closed form solutions in dotted lines. Left panels show results for value functions, and right panels for policy functions. Each

panel collects results for the three quantiles, τ = { 0 . 25 , 0 . 50 , 0 . 75 } , in blue, black, and red colors, respectively. We use five

different shock values in each model, but present results only for the first shock. Results for the other cases are qualitatively
13 
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Fig. 2. Value and Policy Function for 0.80 and Grid p = q = 500 . 

Fig. 3. Value and Policy Function for γ = 0 . 80 and Grid p = q = 10 0 0 . 

Fig. 4. Value and Policy Function for γ = 1 . 25 and Grid p = q = 250 . 

 

 

 

 

 

similar and we omit them for brevity. Table 1 below, computes the average statistic of the difference between the theoretical

and numerical for value and policy functions. 

Figure 1 shows results for the value functions (left panel) and asset allocation policy functions (right panel) when the 

grid uses only p = q = 250 . We first note that the numerical value and policy functions (solid lines) are close to their the-

oretical counterparts (dotted lines). Figure 1 shows that the numerical procedures already approximate their corresponding 

counterparts very closely even for the smaller grid. 

Both panels in Figure 1 display value and policy functions for each of the three quantiles, for both the theoretical and

numerical cases. The figure shows that both value and policy functions, for a given X , are increasing over quantiles, that

is, the (value and policy) curves for τ = 0 . 25 are the lowest functions, followed by τ = 0 . 50 , then by τ = 0 . 75 . Thus, for
14 
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Fig. 5. Value and Policy Function for γ = 1 . 25 and Grid p = q = 500 . 

Fig. 6. Value and Policy Function for γ = 1 . 25 and Grid p = q = 10 0 0 . 

Table 1 

Accuracy of numerical algorithm to compute value and policy functions. 

Value Function Policy Function 

γ Grid τ L 1 -Level L 1 -Normalized L 1 -Level L 1 -Normalized 

1.25 250 0.25 8 .6968 -0 .0146 0 .0001 0 .0002 

0.50 0 .8960 -0 .0033 0 .0003 -0 .0010 

0.75 -0 .0451 0 .0001 0 .0001 -0 .0006 

500 0.25 -7 .2374 -0 .0121 0 .0001 0 .0001 

0.50 -0 .6439 -0 .0023 0 .0003 -0 .0010 

0.75 0 .0577 0 .0002 0 .0001 -0 .0007 

1000 0.25 -6 .8225 -0 .0114 0 .0001 0 .0000 

0.50 -0 .5780 -0 .0021 0 .0002 -0 .0009 

0.75 0 .0657 0 .0002 0 .0001 -0 .0007 

0.8 250 0.25 -0 .0500 -0 .0015 -0 .0004 -0 .0003 

0.50 0 .2626 0 .0067 0 .0012 -0 .0028 

0.75 0 .0222 0 .0005 0 .0000 -0 .0007 

500 0.25 0 .0535 -0 .0016 -0 .0003 -0 .0004 

0.50 -0 .2479 0 .0063 0 .0012 -0 .0028 

0.75 -0 .0185 0 .0004 0 .0000 -0 .0007 

1000 0.25 -0 .0543 -0 .0016 -0 .0003 -0 .0004 

0.50 0 .2452 0 .0062 0 .0012 -0 .0027 

0.75 0 .0168 0 .0004 0 .0000 -0 .0007 

Note: The statistics L 1 -Level and L 1 -Normalized are, respectively, the average over 

evaluation points of the approximation error, and the normalized approximation er- 

ror; γ is the EIS; Grid is the size of the grid used to evaluate the methods; τ is the 

coefficient of risk attitude. 

15 
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γ = 0 . 8 ( EIS = 1 . 25 ), the larger the risk attitude, the larger the value and policy functions. In addition, the right panel of

Figure 1 shows that the optimal asset allocations are linear and monotone increasing over X , as prescribed by the theory. 

Figure 2 displays the value and policy functions, in the left and right panels, respectively, for a grid of 500. The fig-

ure shows the same patterns as in the previous figure. The left panel of Figure 2 provides evidence that as the grid becomes

finer, for all quantiles, the numerical value functions approximation to the theoretical values improve. Moreover, the right 

panel shows that all three policy functions approximate their corresponding theoretical counterparts closely. 

Finally, Figure 3 increases the grid further to p = q = 10 0 0. In this case, we observe that the numerical methods approxi-

mate the theoretical values very closely. The patterns are similar to those in the previous figures. 

Now we investigate the numerical procedures when γ = 1 . 25 , and hence EIS = 0 . 80 . All the other parameters are the

same, relative to the previous figures. Figures 4–6 display results for grids 250, 50 0, and 10 0 0, respectively. The first main

finding in Figures 4–6 is that the patterns are similar to those in Figures 1–3 in terms of approximations of the numerical

methods relative to their corresponding theoretical counterparts. Numerical approximations are close to theoretical counter- 

parts even for the smallest grid, and improve as the grid becomes finer. 

The left panels in Figures 4–6 show that value functions are monotone increasing over X for all three quantiles. Moreover, 

as in the previous case, the value functions for γ = 1 . 25 are also increasing over quantiles, that is τ = 0 . 25 is the lowest

curve, followed by τ = 0 . 50 , and then τ = 0 . 75 . 

Now we note that, when γ increases to 1.25, the EIS reduces, in particular, for this case the EIS is smaller than one ( EIS =
1 /γ = 0 . 80 ). Recall that the EIS measures how willing individuals are to substitute intertemporally between consumption

this period and consumption next period. As discussed previously, and displayed in the right panels of Figures 4–6 , the

policy functions are monotone increasing across X for all quantile cases. However, differently from the case γ = 0 . 80 , now

the order of the policy function has changed over the quantiles. For this case, EIS < 1 , the more risk averse agent, τ = 0 . 25 ,

has the highest policy function, for a given value of X , followed by the median, and τ = 0 . 75 being the lowest policy for a

given value of X . Thus, when EIS is smaller than one, and economic agents are less willing to substitute consumption this

period and next period – or less sensitivity of consumption growth to changes in interest rates – a more risk averse agent

invests more, relative to a less risk averse agent. 

The result on the change of order in the policy functions for the allocation of asset savings for the next period across

quantiles when the EIS is reduced (from 1 /γ = 1 . 25 to 1 /γ = 0 . 80 ) is interesting. As EIS decreases, consumption growth

is less responsive to changes in interest rates. Everything else equal, if consumption is less responsive to changes, the as-

set allocation is more responsive. To understand and evaluate this change, we use the asset allocation policy function in 

equation (27) . We wish to assess how a τ,γ varies with γ . Recall that a τ,γ = β
1 
γ ( Q τ [ w ] ) 

1 −γ
γ . Define l(a τ,γ ) = ln (a τ,γ ) =

1 
γ ln β + 

1 −γ
γ ln Q τ [ w ] . Then, 

∂ l(a τ,γ ) 

∂γ
= − 1 

γ 2 
[ ln β + ln ( Q τ [ w ]) ] . 

Observe that for β = 0 . 95 , ln (β) = −0 . 05129 , and Q τ [ w ] = { 0 . 9 , 1 , 1 . 05 } , for τ = { 0 . 25 , 0 . 50 , 0 . 75 } , respectively, such that

ln ( Q τ [ w ]) = {−0 . 105 , 0 , 0 . 049 } . Thus, [ ln β + ln ( Q τ [ w ])] < 0 and the above derivative becomes positive for all three quan-

tiles. Hence, increasing γ implies increasing a τ,γ , which in turn implies increasing asset allocation. Moreover, we see that 

the magnitude of the effect on τ = 0 . 25 is relatively larger than that on the median, which is lager than that on τ = 0 . 75 .

This shows that the effect of increasing the EIS is positive for all quantiles, but it is relatively larger for smaller quantiles,

which induces the change in order in the policy functions. 

Table 1 presents the results for the accuracy error of the numerical methods. Recall that the average approximation error 

is calculated by the difference between the numerical and closed form solutions of value and policy functions for each point

that these functions are evaluated, and then taking the average of the approximation error over the evaluation points. We 

present results for both the comparison in levels and after standardizing the calculation of the approximation error. Both 

versions of comparisons deliver the high levels of accuracy for the value function iteration computation of the quantile 

model. These results show evidence that the numerical procedures are able to approximate the theoretical solutions very 

closely. Moreover, the results corroborate the findings displayed in the figures above. 

Overall, results from these exercises show evidence that the suggested numerical methods to solve the dynamic quantile 

model provide a high degree of accuracy. Hence, researchers applying this solution algorithm can be confident that their 

quantitative answers are sound. Moreover, since the dynamic quantile model allows for separation of the risk attitude, τ , 

and the EIS, 1 /γ , investigating the effects of varying these parameters, together or separately, provides interesting insights 

when studying dynamic economic models under uncertainty. 

5.3. Comparison with the expected utility 

To illustrate the methods further, we compute the dynamic quantile model numerically varying several of the parameters, 

and compare results with the standard expected utility (EU) case. 

5.3.1. Numerical procedures 

In this section we simulate the model using an extension of the algorithm with interpolation. The procedure is described 

in the Appendix B . We use the same specification for the variables X , Y , and the CRRA utility function, as in the previous
16 
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Fig. 7. Value and Policy Functions for γ = 0 . 80 and iid shocks. 

Fig. 8. Value and Policy Functions for γ = 0 . 80 and Markov shocks. 

 

 

 

 

 

simulations. We also fix the discount factor β , EIS, and the risk attitudes τ ’s parameters as following: 

β = 0 . 95 ; γ = { 0 . 80 , 1 . 25 }; τ ∈ { 0 . 25 , 0 . 50 , 0 . 75 } , 
such that EIS = 1 /γ = { 1 . 25 , 0 . 8 } . We fix the grid for the variables X , Y with p = q = 500 increments for all computations.

We use the same specifications for the EU case, with the exception that it only relies on β and γ . 

To make the results easier to visualize, we set the values for the shocks as: i) Z = { 0 . 4 , 0 . 6 , 0 . 8 , 1 , 1 . 2 } for γ = 0 . 80 ; ii)

Z = { 0 . 9 , 1 , 1 . 2 , 1 . 4 , 1 . 6 } for γ = 1 . 25 . We present results for the iid and Markov cases varying the transition matrices. For

the iid case we use the transition matrix as: 

P = 

⎡ 

⎢ ⎢ ⎣ 

p 11 p 12 p 13 p 14 p 15 

p 21 p 22 p 23 p 24 p 25 

p 31 p 32 p 33 p 34 p 35 

p 41 p 42 p 43 p 44 p 45 

p 51 p 52 p 53 p 54 p 55 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎣ 

0 . 2 0 . 2 0 . 2 0 . 2 0 . 2 

0 . 2 0 . 2 0 . 2 0 . 2 0 . 2 

0 . 2 0 . 2 0 . 2 0 . 2 0 . 2 

0 . 2 0 . 2 0 . 2 0 . 2 0 . 2 

0 . 2 0 . 2 0 . 2 0 . 2 0 . 2 

⎤ 

⎥ ⎥ ⎦ 

. (30) 

For the Markov case we consider the following the stochastic transition matrix P [ i, j] = p i j : 

P = 

⎡ 

⎢ ⎢ ⎣ 

0 . 1 0 . 2 0 . 4 0 . 2 0 . 2 

0 . 2 0 . 1 0 . 4 0 . 1 0 . 2 

0 . 2 0 . 3 0 . 1 0 . 3 0 . 1 

0 . 3 0 . 2 0 . 2 0 . 1 0 . 2 

0 . 2 0 . 25 0 . 25 0 . 2 0 . 1 

⎤ 

⎥ ⎥ ⎦ 

. (31) 

5.3.2. Results 

Now we present the results. Figures 7 and 8 collect results for γ = 0 . 80 , for the iid and Markov shocks, respectively.

Quantiles τ = 0 . 25 , τ = 0 . 50 , and τ = 0 . 75 are solid lines in blue, black and red, respectively. The standard expected utility

is the green dotted line. 
17 
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Fig. 9. Value and Policy Functions for γ = 1 . 25 and iid shocks. 

Fig. 10. Value and Policy Functions for γ = 1 . 25 and Markov shocks. 

 

 

 

 

 

 

 

 

 

 

Figures 7 and 8 display results for the value functions in the left panels, and the asset allocation policy function in the

right panels. The figures show that results for the iid case are qualitative similar to those for the Markov case. Both value

and policy functions are monotone increasing across X , for quantile and expectation models. In addition, the right panels 

in Figures 7 and 8 show that, for a given X , the optimal asset allocation level is increasing on the risk attitude, τ , i.e., the

more risk taker – larger quantiles –, the larger the asset allocation when γ = 0 . 80 ( EIS = 1 /γ = 1 . 25 ). 

We also notice that, the results for the EU are close to the median case. The right panels in Figures 7 and 8 show the

asset allocation policy functions for the expectation are only slightly below the median, for both the iid and Markov cases. 

Now we move to the case γ = 1 . 25 , and hence EIS = 1 /γ = 0 . 8 . Figures 9 and 10 report results for the iid and Markov

shocks, respectively. We first observe the same monotone increasing across X patters for both the value and policy functions 

for all three quantiles and the expected utility. Moreover, policy functions for the allocation of asset savings for the next 

period are linear for both quantile and EU. 

From the right panels in Figures 9 and 10 , we find a larger asset allocation level for higher risk aversions, that is, for

a given X , the asset allocation curve for τ = 0 . 25 is above τ = 0 . 50 and τ = 0 . 75 , respectively. Thus, as EIS increases, and

willingness to intertemporally substitute consumption this period and consumption next period increases, the more risk 

averse agent has a larger asset allocation relative to low risk averse. 

Overall, these simulations show evidence that the numerical procedures are able to handle iid and Markov cases well. 

Moreover, these exercises illustrate an advantage of the dynamic quantile model with respect to the standard EU model, 

such that, for a given EIS, the figures collect behavior for three different risk attitudes. 

5.4. Simulations 

Applied economists often characterize the behavior of economic models through statistics from simulated paths of the 

economy. In this section, we simulate the quantile and EU models, for 10,0 0 0 periods. In both cases we use the decision rules

for EIS as γ ∈ { 0 . 80 , 1 . 25 } , and for the quantile case each of the three quantiles capture risk aversion τ ∈ { 0 . 25 , 0 . 50 , 0 . 75 } .
We discard the first 10 0 0 periods as a burn-in to eliminate the transition from the initial starting point. The remaining

observations constitute a sample from the ergodic distribution of the economy. We use the same parametrization as that 
18 
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Fig. 11. Densities for the allocation of asset savings for the next period for γ = 0 . 80 ; iid (left panel) and Markov (right panel) shocks. 

Fig. 12. Densities for the allocation of asset savings for the next period for γ = 1 . 25 ; iid (left panel) and Markov (right panel) shocks. 

Table 2 

Mean and standard error of the allocation of asset savings for the next period. 

γ = 0 . 80 iid γ = 0 . 80 Markov γ = 1 . 25 iid γ = 1 . 25 Markov 

Mean SE Mean SE Mean SE Mean SE 

τ = 0 . 25 0.562 0.092 0.552 0.080 0.640 0.240 0.605 0.148 

τ = 0 . 50 0.659 0.147 0.5799 0.105 0.730 0.217 0.629 0.166 

τ = 0 . 75 0.524 0.042 0.5129 0.026 0.524 0.043 0.513 0.026 

Expectation 0.709 0.194 0.5989 0.114 0.838 0.310 0.644 0.162 

 

 

 

 

 

 

 

 

 

 

in Section 5.2.2 above. In particular, Z = { 0 . 90 , 0 . 95 , 1 , 1 . 05 , 1 . 15 } , for iid shocks the transition matrix is in (29) , and for

Markov shocks the matrix is in (31) . We initialize simulations from the middle state space. In addition, since the shock in

the model is multiplicative, we consider a discretization for X and Y from 0.5 to 2. We present results for grid of p = q = 500,

but results for grid of 10 0 0 are similar. 

Figures 11 and 12 report results for the densities of the allocation of asset savings for the next period for γ = 0 . 80 and

γ = 1 . 25 , respectively. The left panels display results for iid shocks and the right panels for Markov shocks. Results for

quantiles τ = 0 . 25 , τ = 0 . 50 , and τ = 0 . 75 are in solid blue, black, and red lines, respectively. Results for the EU case are in

solid green lines. Moreover, Table 2 collects simple descriptive statistics, mean and standard errors, on these simulated asset 

allocations. 

The left panel in Figure 11 shows that for EIS larger than one, γ = 0 . 8 , the EU and median cases have larger means and

variances. The right panel shows that in the Markov case, all densities are roughly centered around the same value. 

The left panel in Figure 12 shows that when EIS decreases, the mean of the distribution increases, relative to the previous

case. We can also see that the dispersion τ = 0 . 25 and τ = 0 . 50 slightly increase, but for τ = 0 . 75 and expected utility

case the dispersion decreases. The right panel of Figure 12 shows a similar pattern as in the previous case with the more

concentrated, although when EIS decreases the average asset allocation increases. 
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6. Conclusion 

This paper studies dynamic programming for quantile preference models, in which the agent maximizes the stream of 

the future τ -quantile utilities, for τ ∈ (0 , 1) . We, first, extend existing theoretical results to allow the dynamic quantile

model to have a finite-horizon. Second, we discuss numerical methods, based on value function iterations, for solving the 

quantile recursive model dynamic programming and compute value and policy functions. Hence, this paper contributes to 

the literature by offering numerical algorithms that can be used by applied economists to compute and simulate models 

based on quantile maximization. 

To illustrate the developments, we use an intertemporal consumption quantile model, which allows one to calculate ex- 

plicit algebraic closed form solutions for the value and policy functions. We assess the accuracy of the proposed numerical 

methods by computing and comparing the theoretical and numerical value and policy functions, for several combinations of 

the parameters – discount factor, elasticity of intertemporal substitution, and risk attitude, which is measured by the quan- 

tiles. The results document evidence that the suggested algorithm provides solutions that are very close to the theoretical 

counterparts and provide a reliable computational method to solve the problem. 

Many issues remain to be investigated. From the theoretical viewpoint, extending the finite horizon model to an over- 

lapping generations framework is an interesting avenue. From the numerical point of view, extensions of the methods to a 

multigrid scheme as in Chow and Tsitsiklis (1991) would be of interest. Moreover, additional techniques to solve the prob-

lem numerically and improve speed and accuracy, as for example, perturbation and Chebyshev polynomials methods, would 

be welcome advances. 

Appendix A. Proofs 

A1. Proofs of section 3 

We organize the proof of Lemma 1 in a series of Lemmas. Assume Assumption 1 for Lemmas 2 –4 . 

Lemma 2. If v ∈ C, the map (y, z) �→ Q τ [ v (σ (x, y, w ) , w ) | z] is continuous. 

Proof. This result is proved in de Castro et al. (2022b) . �

Lemma 3. For each v ∈ C the supremum in equation (5) is attained and T τ (v ) ∈ C. Moreover, for each v ∈ C, the optimal corre-

spondence ϒv : X × Z ⇒ X defined by 

ϒv (x, z) ≡ arg max 
y ∈ �(x,z) 

Q τ [ u ( x, y, z ) + βv (σ (x, y, w ) , w ) | z] (A.1) 

is nonempty and upper semi-continuous. 

Proof. Let g : X × Y × Z × Z → R be defined by 

g(x, y, z, w ) ≡ u ( x, y, z ) + βv (σ (x, y, w ) , w ) , (A.2) 

where w ∈ Z stands for next period’s shock and z ∈ Z for the current period shock. By Lemma A.2 in de Castro and Galvao

(2019 , p. 1927), we have that Q τ [ g(x, y, z, w ) | z] = u ( x, y, z ) + βQ τ [ v (σ (x, y, w ) , w ) | z] . By Lemma 2 above, Q τ [ g(x, y, z, w ) | z] is

continuous in (x, y, z) . By Assumption 1 , �(x, z) is compact. From the Berge’s Maximum Theorem, the maximum is attained,

the value function T τ (v ) is continuous and ϒv is nonempty and upper semi-continuous. Therefore, T τ (v ) ∈ C. �

We conclude the proof of Lemma 1 with the following lemma, which shows that T τ satisfies Blackwell’s sufficient con-

ditions for a contraction. 

Lemma 4. T τ satisfies the following conditions: 

a) For any v , v ′ ∈ C, v � v ′ implies T τ (v ) � T τ (v ′ ) . 
b) For any a � 0 and x ∈ X, T τ (v + a )(x ) � T τ (v )(x ) + βa , with β ∈ (0 , 1) . 

Then, ‖ T τ (v ) − T τ (v ′ ) ‖ � β‖ v − v ′ ‖ , that is, T τ is a contraction with modulus β . Therefore, T τ has a unique fixed-point

v τ ∈ C. 

Proof. To see (a), let v , v ′ ∈ C, v � v ′ and define g as in equation (A.2) and analogously for g ′ , that is, g ′ (x, y, z, w ) =
u ( x, y, z ) + βv ′ (σ (x, y, w ) , w ) . It is clear that g � g ′ . Then, by Lemma A.1 part (v i ) of de Castro and Galvao (2019 , p. 1926),

Q τ [ g(·) | z] � Q τ [ g ′ (·) | z] , which implies (a). 

To verify (b), we use the monotonicity property (Lemma A.2 of de Castro and Galvao (2019 , p. 1927)): 

Q τ [ u (x, y, z) + β(v (σ (x, y, w ) , w ) + a ) | z] = Q τ [ u (x, y, z) + βv (σ (x, y, w ) , w ) | z] + βa. 

Thus, T τ (v + a ) = T τ (v ) + βa , that is, (b) is satisfied with equality. The conclusion follows by standard arguments. See, for

instance, de Castro and Galvao (2019) . �
20 
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Proof of Proposition 1 : Under Assumption 1 , from equation (6) and T τ (v τ ) = v τ , 

‖ v n − v τ‖ = ‖ T τ (v n −1 ) − T τ (v τ ) ‖ � β‖ v n −1 − v τ‖ . 

Repeating the same argument n times, we obtain ‖ v n − v τ‖ � βn ‖ v 0 − v τ‖ . �

A2. Proofs of section 4 

Proof of Proposition 2 : Since �(x t , z t ) is compact and this correspondence is continuous, with u , σ and v t+1 continuous,

the optimal y t ∈ �(x t , z t ) exists and the value function v t is continuous. �

Appendix B. Interpolation Algorithm to Compute the Conditional Quantile 

When solving the value function or the policy function numerically, one often has to calculate the value of these func-

tions outside of the points of the pre-specified grid. In this appendix, we show how to modify the algorithm given in

Sections 3.2 and 4.2 to obtain the conditional quantile as an interpolation. For that, it is enough to modify item (3)-(d) and

forward in the original algorithm, as follows: 

d) For each (i x , i y , i z ) , find the only j ∈ { 1 , ., k } that satisfies: 11 

P [ i z , i 
(1) 
w 

] + · · · + P [ i z , i 
( j−1) 
w 

] < τ � P [ i z , i 
(1) 
w 

] + · · · + P [ i z , i 
( j) 
w 

] . 

e) Using the j obtained in the previous step, define P l = P [ i z , i 
(1) 
w 

] + · · · + P [ i z , i 
( j−1) 
w 

] and P u = P [ i z , i 
(1) 
w 

] + · · · + P [ i z , i 
( j) 
w 

] . 12 

(f) Find α such that αP l + (1 − α) P u = τ , that is, 

α = 

P u − τ

P u − P l 
. 

g) For each (i x , i y , i z ) ∈ { 1 , . . . , p} × { 1 , . . . , q } × { 1 , . . . , k } , use the above α and j to define the following interpolation as a

proxy of the τ -quantile of G : 

H[ i x , i y , i z ] = αG [ i x , i y , i z , i 
( j−1) 
w 

] + (1 − α) G [ i x , i y , i z , i 
( j) 
w 

] . 

The rest of the algorithm can continue as before. 
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