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Abstract

Affiliation was introduced by Milgrom and Weber (1982) through the
positive dependence intuition, that is, high value of one bidder’s estimate
makes high values of the others’ estimates more likely. However, positive
dependence has many alternative definitions; we show that affiliation is one
of the most restrictive among them. This poses the question whether affili-
ation’s main implications (equilibrium existence and the revenue ranking of
auctions) remain valid for other formalizations of positive dependence. We
show that both implications can indeed be generalized in the context of pri-
vate values, and give counterexamples for further generalizations.

JEL Classification Numbers: C62, C72, D44, D82.

Keywords: affiliation, positive dependence, statistical dependence of
types, auctions, pure strategy equilibrium in auctions, revenue ranking.

∗First version of this paper: de Castro (2007). I am grateful to Nabil Al-Najjar, Aloisio Araujo,
Alain Chateauneuf, Maria Ángeles de Frutos, Juan Dubra, Ángel Hernando, Vijay Krishna, Andreu
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1 Introduction

Asymmetric information is a central theme in modern economics, not only in game
theory, but also in industrial organization, general equilibrium, group decision, fi-
nance and many other subdisciplines. Most models assume that each agent pri-
vately knows a random variable, and these random variables are statistically inde-
pendent. Although independence is convenient for theoretical manipulations, it is
considered a restrictive and unrealistic assumption. Independence is regarded as
restrictive because it is satisfied by a “knife-edge” set of distributions, and unre-
alistic because there are many potential sources of correlation in the real world:
media, education, culture or even evolution. Perceiving these limitations early on,
economists tried to surpass the mathematical difficulties and include statistical de-
pendence in their models.

The introduction of affiliation was a milestone in the study of dependence
in economics. This remarkable contribution was made by Milgrom and Weber
(1982a), who borrowed a statistical concept (multivariate total positivity of order
2, MTP2) and applied it to a general model of symmetric auctions.1 Affiliation is
a generalization of independence—see its definition in section 2—that was intro-
duced through the appealing positive dependence intuition: “Roughly, this [affili-
ation] means that a high value of one bidder’s estimate makes high values of the
others’ estimates more likely” (Milgrom and Weber (1982a, p.1096)).

Among other important results, Milgrom and Weber (1982a) were able to es-
tablish two key consequences of affiliation:

1. Equilibrium existence: there exists a pure strategy equilibrium in symmet-
ric first-price auctions.2 This is important because previous results required
types to be independent.

2. Revenue ranking: under affiliation, the English and the second-price auction
give higher expected revenue than the first-price auction (in self-explanatory

1In two previous papers, Milgrom (1981b) and Milgrom (1981a) presented results that used a
particular version of the concept, under the name “monotone likelihood ratio property” (MLRP). It
is also clear that Wilson (1969) and Wilson (1977) influenced the development of the affiliation idea.
Nevertheless, the concept was fully developed and the term affiliation first appeared in Milgrom and
Weber (1982a). See also Milgrom and Weber (1982b). When there is a density function, the property
had been previously studied by statisticians under different names. Lehmann (1966)) calls it Positive
Likelihood Ratio Dependence (PLRD), Karlin (1968) calls it Total Positivity of order 2 (TP2) for the
case of two variables or Multivariate Total Positivity of Order 2 (MTP2) for the multivariate case.

2Milgrom and Weber (1982a) also proved the existence of equilibrium for second-price auctions
with interdependent values. In our setup (private values), the second-price auction always has an
equilibrium in weakly dominant pure strategies, which simply consists of bidding the private value.
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symbols: RE > R2 > R1).3

Taking together with the positive dependence intuition mentioned above, these
two results suggest an economic interpretation in terms of comparative statics:
when independence is relaxed in the direction of positive dependence, equilib-
rium is not a problem and the English auction (and second-price auction) gives
higher revenue than the first-price auction. From an economic point of view, this
comparative statics exercise is very interesting, since it clearly indicates what hap-
pens to the conclusion of the revenue equivalence theorem (RET) when one of its
assumptions is relaxed from independence to positive dependence (or affiliation).4

We note, however, that affiliation is not positive dependence. Many differ-
ent formalizations of positive dependence can be given; in section 3 we offer six
of them. It is natural to ask how affiliation compares with these other concepts.
Proposition 3.1 shows that affiliation is the strongest of all. This observation is
important because the study of correlation or positive correlation in auctions has
been almost exclusively restricted to affiliation, leading some researchers to equate
the former with the later.5 Proposition 3.1 clarifies that the distinction is poten-
tially relevant and suggests a gap between the “lesson” that “positive dependence
implies equilibrium existence and the revenue dominance of English auctions” and
what we actually know.

This sets the stage to the main question in this paper: is it possible to extend
the two main results mentioned above (equilibrium existence and revenue ranking)
to other definitions of positive dependence? This question is important because
positive dependence—rather than affiliation—is the intuitively appealing property.
Once we realize that affiliation is not synonymous of positive dependence, one
wonders how the above mentioned results hinge on the specific formulation in-
troduced by Milgrom and Weber. Moreover, as we review in section 4, the intu-
itive explanation for both results seems to rely exclusively on positive dependence.
Therefore, one should expect that weaker forms of positive dependence are suffi-
cient for the result. Are they?

Section 4 answers this question in an interesting way. First, Theorems 4.1 and
4.2 show that both properties can be in fact generalized, at least in the context of

3For private value auctions, which is the focus of this paper, English and second-price auctions
are equivalent, which implies RE = R2. See Milgrom and Weber (1982a).

4Besides independence, the RET requires other restrictive conditions, such as symmetry and risk
neutrality. The revenue ranking of auctions is undetermined if all those assumptions are relaxed.
Thus, the result is akin to a comparative statistics exercise: holding everything else fixed, what
changes if independence is relaxed in the direction of positive dependence?

5Just to mention an example, consider the following: “The dynamic exchange of value informa-
tion between bidders (...) is known to enhance revenue and efficiency in single item auctions with
correlated values” Parkes (2006, p.42).
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private value auctions. However, as we explain below, the generalization is not
very significative; the required property is still restrictive. Can we go further in the
generalization? Both theorems give counterexamples for further generalizations.

Our results are sharp, in the following sense. Proposition 3.1 ranks the seven
properties in a strict rank of generality. Affiliation being Property VII, we gener-
alize its implications for Property VI (decreasing inverse hazard rate), and show
through counterexamples that the results fail for Property V (monotonicity in the
first order stochastic sense). Curiously, exactly the same properties work for both
results. It is even more interesting to note that monotonicity in the first order
stochastic sense (Property V) is among the most used in economics. It has been so
far unknown that it was not sufficient for implying equilibrium existence in auc-
tions.6

The other sections of the paper are as follows. Section 2 describes the standard
private value auction model. Section 5 briefly reviews the theoretical, experimental
and empirical literature. As a complementary observation, section 6 documents
that affiliation is restrictive in other senses. Specifically, Proposition 6.1 establishes
that the set of continuous density functions that are not affiliated is open and dense
in the set of all continuous density functions. In other words, the set of affiliated
densities is meager. Section 7 concludes with some additional remarks, including
direction for future research. An appendix collects the proofs.

2 Basic model and definitions

There are n bidders, i = 1, ..., n. Bidder i receives private information ti ∈
[
t, t
]

which is the value of the object for himself. The usual notation t = (ti, t−i) =
(t1, ..., tn) ∈

[
t, t
]n is adopted. The (private) values are distributed according to a

pdf f :
[
t, t
]n → R+ which is symmetric. That is, if π : {1, ..., n} → {1, ..., n}

is a permutation, f (t1, ..., tn) = f
(
tπ(1), ..., tπ(n)

)
. Let f (x) =

∫
f (x, t−i) dt−i

be a marginal of f . Our main interest is the case where f is not the product of its
marginals, that is, the case where the types are dependent. We denote by f (t−i | ti)
the conditional density f (ti, t−i) /f (ti).

After knowing his value, bidder i places a bid bi ∈ R+. He receives the object
if bi > maxj 6=i bj . We consider both first and second-price auctions with private
values. This means that the private information of each bidder (type) is also that
bidder’s value for the object. As Milgrom and Weber (1982a) show, second-price
and English auctions are equivalent in the case of private values, as we assume
here. In a first-price auction, if bi > maxj 6=i bj , bidder i’s utility is u (ti − bi) and

6Even if the long period without a proof could suggest that this property was indeed not sufficient,
only a clear result could dissipate the ineluctable doubt.
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is u (0) = 0 if bi < maxj 6=i bj . In a second-price auction, bidder i’s utility is
u (ti −maxj 6=i bj) if bi > maxj 6=i bj and u (0) = 0 if bi < maxj 6=i bj . For both
auctions, ties are randomly broken.

A pure strategy is a function b : [0, 1]→ R+, which specifies the bid b (ti) for
each type ti. The interim payoff of bidder i, who bids β when his opponent j 6= i
follows b : [0, 1]→ R+ is given by

Πi (ti, β, b (·)) = u (ti − β)F
(
b−1 (β) | ti

)
= u (ti − β)

∫ b−1(β)

t
f (tj | ti) dtj ,

if it is a first-price auction and

Πi (ti, β, b (·)) =

∫ b−1(β)

t
u (ti − b (tj)) f (tj | ti) dtj ,

if it is a second-price auction.
We focus attention on symmetric monotonic pure strategy equilibrium (SMPSE),

which is defined as b (·) such that Πi (ti, b (ti) , b (·)) > Πi (ti, β, b (·)) for all β
and ti. The usual definition requires this inequality to be true only for almost all ti.
This stronger definition creates no problems and makes some statements simpler,
such as those about the differentiability and continuity of the equilibrium bidding
function (otherwise, such properties should be qualified by the expression “almost
everywhere”). Finally, under our assumptions, the second price auction always has
a SMPSE in a weakly dominant strategy, which is b (ti) = ti.

By reparametrization, we may assume, without loss of generality,
[
t, t
]

=
[0, 1]. It is also useful to assume n = 2, but this is not necessary for most of
the results. We also assume risk neutrality, i.e., u (x) = x. Thus, unless otherwise
stated, the results will be presented under the following setup:

BASIC SETUP: There are n = 2 risk neutrals bidders (u (x) = x), with private
values distributed according to a symmetric density function f : [0, 1]2 → R+.

Affiliation is formally defined as follows.7

Definition 2.1 The density function f :
[
t, t
]n → R+ is affiliated if for any

t and t′ in
[
t, t
]n, we have f (t) f (t′) 6 f (t ∧ t′) f (t ∨ t′), where t ∧ t′ =

(min {t1, t′1} , ...,min {tn, t′n}) and t ∨ t′ = (max{t1, t′1}, ..., max{tn, t′n}).

7Affiliation is equivalent to MLRP in the particular case of two variables with density function.
It is possible to define affiliation even if the joint distribution has no density function. See Milgrom
and Weber (1982a).
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It is useful to introduce the following notation: D will denote the set of all
densities:

D ≡ {f : [0, 1]n → R+ :

∫
[0,1]n

f(t)dt = 1}.

The set of all continuous densities will be denoted C and A will denote the set of
affiliated (continuous or not) densities.

3 Affiliation and Positive dependence

Affiliation was introduced through the positive dependence intuition: “a high value
of one bidder’s estimate makes high values of the others’ estimates more likely”
(Milgrom and Weber (1982a, p. 1096)). This intuition is very appealing, because
positive dependence describes a circumstance likely to happen in the real world. In
fact, many authors introduce affiliation through this intuition or some of its varia-
tions.

Affiliation captures this intuition, as we illustrate in Figure 1, below. Affiliation
requires that the product of weights at points (x′, y′) and (x, y) (where both values
are high or both are low) be greater than the product of weights at (x, y′) and (x′, y)
(where they are high and low, alternatively). In other words, the distribution puts
more weight on the points in the diagonal than outside it.

x

f (x, y )
y

f (x′, y )

x′

f (x, y′)
y′

f (x′, y′)

Figure 1 — The pdf f is affiliated if x 6 x′ and y 6 y′ imply
f (x, y′) f (x′, y) 6 f (x′, y′) f (x, y).

However, as long as we are interested in positive dependence, as this intuition
suggests, affiliation is not the only definition available. In the statistical literature
many concepts have been proposed to correspond to the notion of positive depen-
dence. For simplicity, let us consider only the bivariate case and assume that the
two real random variables X and Y have joint distribution F and strictly positive
density function f . The following concepts are formalizations of the notion of
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positive dependence for X and Y :8

Property I — X and Y are positively correlated (PC) if cov(X,Y ) > 0.

Property II — X and Y are said to be positively quadrant dependent (PQD)
if for all non-decreasing functions g and h, cov(g (X) , h (Y )) > 0.

Property III — The real random variables X and Y are said to be associated
(As) if for all non-decreasing functions g and h, cov(g (X,Y ) , h (X,Y )) > 0.

Property IV — Y is said to be left-tail decreasing in X (denoted LTD(Y |X))
if for all y, the function x 7→ Pr[Y 6 y|X 6 x] is non-increasing in x. X and Y
satisfy Property IV if LTD(Y |X) and LTD(X|Y ).

Property V — Y is said to be positively regression dependent on X (denoted
PRD(Y |X)) if Pr[Y 6 y|X = x] = F (y|x) is non-increasing in x for all y. X
and Y satisfy Property V if PRD(Y |X) and PRD(X|Y ).9

Property VI — Y is said to be Inverse Hazard Rate Decreasing in X (denoted
IHRD(Y |X)) if F (y|x)

f(y|x) is non-increasing in x for all y, where f (y|x) is the pdf of
Y conditional toX . X and Y satisfy Property VI if IHRD(Y |X) and IHRD(X|Y ).

Since there are many alternative definitions of positive dependence, a natural
question is: “How do such definitions compare with affiliation?” The following
theorem provides the answer.10

Proposition 3.1 Let affiliation be Property VII. Then,

(V II)⇒ (V I)⇒ (V )⇒ (IV )⇒ (III)⇒ (II)⇒ (I),

and all implications are strict.

8Most of the concepts can be properly generalized to multivariate distributions. See, for example,
Lehmann (1966) and Esary, Proschan, and Walkup (1967). The hypothesis of strictly positive density
function is made only for simplicity.

9This property is also known as monotonicity in the first-order stochastic dominance sense.
10For this theorem, we used only seven concepts for simplicity. Yanagimoto (1972) defines more

than thirty concepts of positive dependence and, again, affiliation is the most restrictive of all but
one.
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The main contribution of this theorem is around properties V II (affiliation),
V I and V (first-order stochastic dominance), which are the most usual properties in
economics. While Milgrom and Weber have proved V II ⇒ V I , we were not able
to find a reference for the implication V I ⇒ V . The counterexamples V I 6⇒ V II
and V 6⇒ V I are also new. These counterexamples are relevant because some
confusion may arise with respect to the ranking of these properties.11 Moreover,
we are not aware of such counter-examples in the literature.

This theorem also sets the stage for our main problem. Since affiliation is just
the strongest positive dependence property, could Milgrom and Weber choose a
weaker property to get their results? This is the subject of the next section.

4 Main Results

Affiliation has been used in the proof of many results. These results can be classi-
fied in two groups: facts that are already true for the independent case (affiliation
allows a generalization) and predictions that are qualitatively different from the
case of independence. In this section, we will focus on one implication for each of
these groups.

The first one is the existence of symmetric monotonic pure strategy equilibrium
(SMPSE) for first price auctions, generalized from independence to affiliation. The
second one is the revenue ranking of auctions: under affiliation, the English and the
second-price auction give expected revenue at least as high as the first price auction
(a fact that we denote by R2 > R1). This last result is in contrast with the case of
independence, where the Revenue Equivalence Theorem (RET) implies the equal-
ity of the expected revenues (R2 = R1).12,13 Both implications were obtained by
Milgrom and Weber (1982a) and I chose them because of their importance. The
purpose of this section is to verify whether these implications (existence of SMPSE
and R2 > R1) are true in a more general setting.

11 A casual reader may think that Milgrom (1981a, Proposition 1) states that V is equivalent to
V II and Riley (1988, Lemma 1) claims that a strict version of properties IV and V implies property
V I . However, this is not the case—the mentioned results are formally correct. Proposition 3.1 helps
to appreciate the subtle aspect of their claims.

12Since affiliation contains independence as a special case, the results can be qualitatively differ-
ent, but must have a logic overlap.

13Both the revenue ranking under affiliation and the RET requires symmetry, risk neutrality and
the same payoff by the lowest type of bidders.
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4.1 Equilibrium existence

Is the existence of SMPSE true under other definitions of positive dependence (see
section 3)? Theorem 4.1 below shows that the following property is sufficient:14

Property VI′ — The joint (symmetric) distribution of X and Y satisfy Prop-
erty VI′ if for all x, x′ and y in [0, 1],

x > y > x′ ⇒ F (y|x′)
f (y|x′)

>
F (y|y)

f (y|y)
>
F (y|x)

f (y|x)
.

It is easy to see that Property VI implies Property VI′ (under symmetry and full
support). Thus, the question becomes whether or not it is possible to generalize the
existence of SMPSE for Property V or even further.

If we define Π (x, y) = (x− b (y))F (y|x), where b (·) is a candidate for
symmetric equilibrium,15 then equilibrium existence is equivalent to Π (x, x) >
Π (x, y). Since b (·) is monotonic, one may conjecture that the monotonicity of
F (y|x) — as Property V assumes — may be sufficient for equilibrium existence,
through some single crossing arguments (as in Athey (2001)). Since Property V
is still a strong property of positive dependence, this conjecture may be consid-
ered reasonable. In fact, the reader may think that the following recent result by
van Zandt and Vives (2007) actually proves that first-order stochastic dominance is
sufficient for equilibrium existence in auctions:

Theorem (van Zandt and Vives, 2007): Assume that for each player i:

1. the utility function is supermodular in the own player’s action ai, has in-
creasing differences in (ai, a−i), and has increasing differences in (ai, t);
and

2. the beliefs mapping pi : Ti →Mi is increasing in the first-order stochastic
dominance partial order.

Then there exist a greatest and a least Bayesian Nash equilibrium, and each one is
in monotone strategies.

14Motivated by an earlier version of this paper, Monteiro and Moreira (2006) obtained other gen-
eralizations of equilibrium existence for non-affiliated variables. Their results are not directly related
to positive dependence properties.

15This candidate is increasing and unique, as we can show using standard arguments. See Maskin
and Riley (1984) or de Castro (2012).
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Despite these compelling reasons, the conjecture that Property V is sufficient
for equilibrium existence in auctions is actually false; the following theorem clari-
fies that SMPSE existence does not generalize beyond Property VI’.16

Theorem 4.1 If f : [0, 1]2 → R satisfies Property VI′, there is a SMPSE. Never-
theless, Property V is not sufficient for the existence of SMPSE.

This theorem shows that the rationale for existence of SMPSE existence for
Property V do not survive a formalization of the result. Simply, Property V is not
strong enough to control the equilibrium inequality Π (x, x) > Π (x, y) for every
pair of points (x, y).

4.2 Revenue ranking

The next implication—R2 > R1—is also an inequality, but it is an inequality over
expected values, not specific realizations. For some realizations of the variables,
the second-price auction can give less revenue than the first-price auction, but for
the inequalityR2 > R1 to be true is sufficient that the opposite happens on average.
Since this is a statement about average cases, one could expect that the revenue
ranking R2 > R1 would be stable across the cases of positive dependence.

There is yet another way of reaching the same conclusion: it is the intuition
for the revenue ranking R2 > R1, which is a contribution of Klemperer (2004,
p.48-9):

[In a first-price auction, a] player with value v + dv who makes
the same bid as a player with a value of v will pay the same price as a
player with a value of v when she wins, but because of affiliation she
will expect to win a bit less often [than in the case of independence].
That is, her higher signal makes her think her competitors are also
likely to have higher signals, which is bad for her expected profits.

But things are even worse in a second-price affiliated private-values
auction for the buyer. Not only does her probability of winning dimin-
ish, as in the first-price auction, but her costs per victory are higher.
This is because affiliation implies that contingent on her winning the
auction, the higher her value the higher expected second-highest value
which is the price she has to pay. Because the person with the highest

16van Zandt and Vives (2007)’s main result does not apply because even simple auctions with 2
players and private-values do not satisfy one of their assumptions (increasing differences). In fact,
if ti > a′j > a′i > aj > ai then (ti − a′i)1[a′

i>a′
j ]
− (ti − a′i)1[a′

i>aj ]
= −(ti − a′i) < 0 while

(ti− ai)1[ai>a′
j ]
− (ti− ai)1[ai>aj ] = 0, to the contrary of the increasing differences requirement.
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value will win in either type of auction they are both equally efficient,
and therefore the higher consumer surplus in first-price auction im-
plies higher seller revenue in the second-price auction.

This intuition appeals mainly to the notion of positive dependence. Thus, the
intuition should lead us to believe that the revenue ranking is still valid under
weaker forms of positive dependence. Despite these intuitive arguments, however,
the following theorem shows that the implication R2 > R1 is not robust for other
definitions of positive dependence.

Theorem 4.2 If f satisfies Property VI’ (see definition above), then the second-
price auction gives greater revenue than the first-price auction (R2 > R1). Specif-
ically, the revenue difference is given by

n

∫ 1

0

∫ x

0
b
′
(y)

[
F (y|y)

f (y|y)
− F (y|x)

f (y|x)

]
f (y|x) dy · f (x) dx

where n is the number of players and b (·) is the first-price equilibrium bidding
function, or by

n

∫ 1

0

∫ x

0

[∫ y

0
L (α|y) dα

]
·
[
1− F (y|x)

f (y|x)
· f (y|y)

F (y|y)

]
· f (y|x) dy · f (x) dx, (1)

where L (α|t) = exp
[
−
∫ t
α
f(s|s)
F (s|s)ds

]
.

More importantly, Property V is not sufficient for this revenue ranking.

These results suggest that affiliation’s implications are not robust. This would
not be a reason for concern, however, if affiliation were indeed typical. It is natural,
therefore, to examine more closely the settings where affiliation could be expected
to hold. The following section makes some comments about this issue.

5 Related literature

Few papers have pointed out restrictions or limitations to the implications of affilia-
tion. Perry and Reny (1999) presented an example of a multi-unit auction where the
linkage principle fails and the revenue ranking is reversed, even under affiliation.
This result shows that revenue ranking is not robust when the number of objects
increases from one to many. In contrast, one of our results shows that the revenue
ranking is not robust even if we maintain the number of objects but allow for other
kinds of dependences. Klemperer (2003) argues that, in real auctions, affiliation
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is not as important as asymmetry and collusion and illustrates his arguments with
examples of the 3G auctions conducted in Europe in 2000–2001.

Nevertheless, much more has been written in accordance with the conclusions
of affiliation. McMillan (1994, p.152) says that the auction theorists working as
consultants to the FCC in spectrum auctions advocated for the adoption of the
open auction using the linkage principle as one of the arguments: “Theory says,
then, that the government can increase its revenue by publicizing any available in-
formation that affects the licensee’s assessed value.”17 Milgrom (1989) emphasizes
affiliation as the explanation for the predominance of the English auction over the
first-price auction.

On the other hand, the experimental and empirical literature show an amazing
lack of studies about whether affiliation holds or not. The empirical literature has
tested affiliation’s implication that the English auction gives higher revenue than
the first-price auction, but there is no clear confirmation of this prediction. See
Laffont (1997) for a survey of empirical literature on auctions. We are aware of
only three papers proposing tests of affiliation: de Castro and Paarsch (2010), Jun,
Pinkse, and Wan (2010) and Li and Zhang (2010). Those papers were motivated
by an earlier version of this paper. The available experimental studies investigated
only some of the implications of affiliation. See Kagel (1995) for a survey of this
literature. See also section 7 below for suggestions of future work regarding this
topic.

6 An observation about affiliation’s typicality

The central topic of this paper is the robustness of affiliation’s main implications.
The fact that it is a restrictive form of positive dependence, established in Proposi-
tion 3.1, is just a motivation for this investigation. However, it is useful to document
that affiliation is a restrictive assumption in other senses. In this section we show
that the set of affiliated densities is small in the set of continuous densities. There
are two ways to characterize a set as small: topological and measure-theoretic. Al-
though it is possible to show that affiliation is restrictive in the measure-theoretic
sense (see an earlier version of this paper, de Castro (2007)), here we limit our-
selves to the topological result, which is simpler.

Recall that C denotes the set of continuous density functions f : [0, 1]n → R+

andA, the set of affiliated densities (continuous or not). Endow C with the standard
topology for the set of continuous functions, that is, the topology defined by the

17Note that this is not necessarily their main argument, since they mentioned other advantages of
the open auction, as “the bidders’ ability to learn from other bids in the auction.” McMillan (1994,
p.152)
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norm of the sup:

‖f‖ = sup
x∈[0,1]n

|f (x)| .

The following theorem shows that the set of continuous affiliated densities is
small in the topological sense. The proofs of this and of all other results are given
in the appendix.

Proposition 6.1 The set of continuous affiliated density functions C ∩ A is mea-
ger.18 More precisely, the set C\A is open and dense in C.

The proof of this theorem is given in the appendix, but the main idea is sim-
ple. To prove that C\A is open, we take a pdf f ∈ C\A which does not sat-
isfy the affiliated inequality for some points t, t′ ∈ [0, 1]2, that is, f (t) f (t′) >
f (t ∧ t′) f (t ∨ t′) + η, for some η > 0. By using such η, we can show that
for a function g sufficiently close to f , the above inequality is still valid, that is,
g (t) g (t′) > g (t ∧ t′) g (t ∨ t′) and thus is not affiliated. To prove that C\A is
dense, we choose a small neighborhood V of a point t̂ ∈ [0, 1]2, such that for all
t ∈ V , f (t) is sufficiently close to f

(
t̂
)
. This can be done because f is continu-

ous. We then perturb the function in this neighborhood to maintain the failure of
the affiliation inequality.

Maybe more instructive than the proof is the understanding of why the result
is true: simply, affiliation requires an inequality to be satisfied everywhere (or
almost everywhere). This is a strong requirement, and it is the source of affiliation’s
restrictiveness.

Although the restrictiveness of affiliation seems to be a “folk theorem,” it was
never stated or formally proven. Note that the conclusion of Proposition 6.1 may
be sensitive to the space and norm considered, that is, the result might be false
without the “right” statement, which indicates the value of formalizing it. Thus,
Proposition 6.1 (together with the measure theoretical result proved in de Castro
(2007)) fill this gap in the literature.

7 Final Remarks

As we observed in the introduction, there is no question that dependence is of
fundamental importance in economics. It is also clear that we have experienced an

18A meager set (or set of first category) is the union of countably many nowhere dense sets, while
a set is nowhere dense if its closure has an empty interior. Thus, the theorem says more than that
C ∩ A is meager: C ∩ A is itself a nowhere dense set, according to the second claim in the theorem.
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astonishing progress since affiliation was introduced as a foundation for the study
of dependence by Milgrom and Weber (1982a). Almost thirty years later, a critical
reassessment of the assumption seems overdue.

The intuitive appeal of affiliation through positive dependence is clear, yet as
demonstrated in this paper, there are other ways to describe positive dependence
that have different implications. This puts in perspective the reach of such impli-
cations.

Although we briefly reviewed the experimental and empirical literature, the
scope of this paper was mainly theoretical. As we have seen, the respective litera-
tures miss comprehensive studies about this topic.

Experimental studies could shed light on the actual distribution of values across
individuals, controlling for the common knowledge. It would be very helpful to de-
velop methods to determine the values that people attribute to objects in an auction
and whether those values are correlated or not. With respect to econometrics, an
obvious need is to develop methods to test the affiliation of bidders’ values, control-
ling for unobserved heterogeneity. It would also be useful to develop techniques to
describe the kind of dependence of the bids in real auctions. It would be very help-
ful to learn whether the kind of dependence is different across different markets
and how these differences can be characterized. For instance, is there less cor-
relation in Internet auctions, where the participants are consumers with almost no
interaction, than in auctions where the participants are firms or professionals acting
in the same industry? Yet another direction of research would be the development
of econometric techniques to deal with dependence out of affiliation.19

It should be noted that the assessment presented in this paper is not a criticism
of Milgrom and Weber (1982a)’s important results. On the contrary, Theorems
4.1 and 4.2 can be interpreted as saying that they have found not only a sufficient
condition for their results, but also practically the most general one.20

On the other hand, this paper tries to deepen our understanding of affiliation,
and how it relates to other aspects of positive dependence. Our results suggest that
substantive progress in this field should require new approaches to dependence in
economics.21

19Grid distributions can be useful for this task. See de Castro and Paarsch (2010).
20Although we generalize their results to property VI in the particular case of private values, this

property is yet close to affiliation (property VII).
21 A possible direction is offered by de Castro (2012), that introduces an assumption named rich-

ness to study correlation in Bayesian games. A particular case of richness is the set of grid distri-
butions, which is useful for simulations and to test existence of symmetric monotone pure strategy
equilibrium.
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A Proofs

A.1 Proof of Proposition 3.1.

The proof of Proposition 3.1 is divided in two parts: the implications and the coun-
terexamples.

A.1.1 Implications

It is obvious that (III) ⇒ (II) ⇒ (I). The implication (IV ) ⇒ (III) is The-
orem 4.3. of Esary, Proschan, and Walkup (1967). The implication (V ) ⇒ (IV )
is proved by Tong (1980, p. 80). The implication (V II) ⇒ (V I) is Lemma 1 of
Milgrom and Weber (1982a). Thus, we need only to prove (V I)⇒ (V ).

For this, assume that H (y|x) ≡ f(y|x)
F (y|x) is non-decreasing in x for all y. Then,

H (y|x) = ∂y [lnF (y|x)] and we have

1− ln [F (y|x)] =

∫ ∞
y

H (s|x) ds >
∫ ∞
y

H
(
s|x′
)
ds = 1− ln

[
F
(
y|x′

)]
,

if x > x′. Then, ln [F (y|x)] 6 ln [F (y|x′)], which implies that F (y|x) is non-
increasing in x for all y, as required by Property V .

A.1.2 Counterexamples

The counterexamples for each passage are given by Tong (1980, Chapter 5), ex-
cept those involving Property (VI): (V ) ; (V I), (V I) ; (V II). For the coun-
terexample of (V ) ; (V I), consider the following symmetric and continuous pdf
defined on [0, 1]2:

f (x, y) =
d

1 + 4 (y − x)2

where d = [arctan (2)− ln (5) /4]−1 is the suitable constant for f to be a pdf. We
have the marginal given by

f (y) =
d

2
[arctan 2 (1− y) + arctan 2 (y)]

so that we have, for (x, y) ∈ [0, 1]2:

f (x|y) = 2
[
1 + 4 (y − x)2

]−1
[arctan 2 (1− y) + arctan 2 (y)]−1 ,
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F (x|y) =
[arctan 2 (x− y) + arctan 2 (y)]

arctan 2 (1− y) + arctan 2 (y)

and

F (x|y)

f (x|y)
=

1

2

[
1 + 4 (y − x)2

]
[arctan (2x− 2y) + arctan (2y)] .

Observe that for y′ = 0.91> y = 0.9 and x = 0.1,

F (x|y′)
f (x|y′)

>
F (x|y)

f (x|y)
,

which violates Property (VI). On the other hand,

∂y [F (x|y)] =

2
1+4y2

− 2
1+4(x−y)2

arctan (2− 2y) + arctan (2y)

−
[arctan (2x− 2y) + arctan (2y)]

[
2

1+4y2
− 2

1+4(1−y)2

]
[arctan (2− 2y) + arctan (2y)]2

In the considered range, the above expression is non-positive, so that Property (V)
is satisfied. Then, (V ) ; (V I).

Now we will establish that (V I) ; (V II). Fix an ε < 1/2 and consider the
symmetric density function over [0, 1]2 :

f (x, y) =

{
k1, if x+ y 6 2− ε
k2, otherwise

where k1 > 1 > k2 = 2
[
1− k1

(
1− ε2/2

)]
/ε2 > 0 and ε ∈ (0, 1/2) . For

instance, we could choose ε = 1/3, k1 = 19/18 and k2 = 1/18. The conditional
density function is given by

f (y|x) =


1, if x 6 1− ε

k1
k2(x+ε−1)+k1(2−ε−x) , if x > 1− ε and if y 6 2− ε− x

k2
k2(x+ε−1)+k1(2−ε−x) , otherwise

and the conditional c.d.f. is given by:

F (y|x) =


1, if x 6 1− ε

k1y
k2(x+ε−1)+k1(2−ε−x) , if x > 1− ε and if y 6 2− ε− x
k2(y+x+ε−2)+k1(2−ε−x)
k2(x+ε−1)+k1(2−ε−x) , otherwise
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and

F (y|x)

f (y|x)
=


1, if x 6 1− ε
y, if x > 1− ε and if y 6 2− ε− x
y + x+ ε− 2 + k1/k2 (2− ε− x) , otherwise

Since 1− k1/k2 < 0, the above expression is non-increasing in x for all y, so that
Property (VI) is satisfied. On the other hand, it is obvious that Property (VII) does
not hold:

f (0.5, 0.5) f
(

1− ε

2
, 1− ε

2

)
= k2k1 < k21 = f

(
0.5, 1− ε

2

)
f
(

0.5, 1− ε

2

)
.

This shows that (V I) ; (V II).

A.2 Proof of Theorem 4.1.

The equilibrium existence follows from Milgrom and Weber (1982a)’s proof. The
counterexample is in continuous values, but using the grid distributions proposed
by de Castro (2012).22 Consider the grid distribution f : [0, 1]2 → R+, f ∈ D4

defined by:

f (x, y) = amp if (x, y) ∈
(
m− 1

k
,
m

k

]
×
(
p− 1

k
,
p

k

]
,

for m, p ∈ {1, 2, 3, 4} , where
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =


2.0797 0.5505 1.4000 0.2296
0.5505 0.6965 0.5504 0.2439
1.4000 0.5504 2.3395 1.8158
0.2296 0.2439 1.8158 1.3040

 .
The definition of f at the zero measure set of points {(x, y) =

(
m
k ,

p
k

)
: m = 0 or

p = 0} is arbitrary. This distribution satisfies Property V but there does not exist
a symmetric monotonic pure strategy equilibrium. These claims can be verified
directly through tedious and lengthy calculations available upon request.

22I was unable to find examples with continuous variables without using grid distributions. I am
grateful to Robert Wilson for pointing out an inconsistency in a previous example.
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A.3 Proof of Theorem 4.2.

The dominant strategy for each bidder in the second-price auction is to bid his
value: b2 (t) = t. Then, the expected payment by a bidder in the second-price
auction, P 2, is given by:

P 2 =

∫
[t,t]

∫
[t,x]

yf (y|x) dy · f (x) dx =

=

∫
[t,t]

∫
[t,x]

[y − b (y)] f (y|x) dy · f (x) dx+

∫
[t,t]

∫
[t,x]

b (y) f (y|x) dy · f (x) dx,

where b (·) gives the equilibrium strategy for symmetric first-price auctions. Thus,
the first integral can be substituted by

∫
[t,t]
∫
[t,x] b

′
(y) F (y|y)

f(y|y) f (y|x) dy · f (x) dx,

from the first-order condition: b
′
(y) = [y − b (y)] f(y|y)F (y|y) . The last integral can be

integrated by parts, to:

∫
[t,t]

∫
[t,x]

b (y) f (y|x) dy · f (x) dx

=

∫
[t,t]

[
b (x)F (x|x)−

∫
[t,x]

b
′
(y)F (y|x) dy

]
· f (x) dx

=

∫
[t,t]

b (x)F (x|x) · f (x) dx−
∫
[t,t]

∫
[t,x]

b
′
(y)F (y|x) dy · f (x) dx

In the last line, the first integral is just the expected payment for the first-price
auction, P 1. Thus, we have

D = P 2 − P 1

=

∫
[t,t]

∫
[t,x]

b
′
(y)

F (y|y)

f (y|y)
f (y|x) dy · f (x) dx

−
∫
[t,t]

∫
[t,x]

b
′
(y)F (y|x) dy · f (x) dx

=

∫
[t,t]

∫
[t,x]

b
′
(y)

[
F (y|y)

f (y|y)
f (y|x)− F (y|x)

]
dy · f (x) dx

=

∫
[t,t]

∫
[t,x]

b
′
(y)

[
F (y|y)

f (y|y)
− F (y|x)

f (y|x)

]
f (y|x) dy · f (x) dx
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Remember that b (t) =
∫
[t,t] αdL (α|t) = t−

∫
[t,t] L (α|t) dα, where L (α|t) =

exp
[
−
∫ t
α
f(s|s)
F (s|s)ds

]
. So, we have

b
′
(y) = 1− L (y|y)−

∫
[t,y]

∂yL (α|y) dα

=
f (y|y)

F (y|y)

∫
[t,y]

L (α|y) dα.

We conclude that

D =

∫
[t,t]

∫
[t,x]

f (y|y)

F (y|y)

∫
[t,y]

L (α|y) dα

[
F (y|y)

f (y|y)
− F (y|x)

f (y|x)

]
f (y|x) dy · f (x) dx

=

∫
[t,t]

∫
[t,x]

[∫
[t,y]

L (α|y) dα

]
·
[
1− F (y|x)

f (y|x)
· f (y|y)

F (y|y)

]
· f (y|x) dy · f (x) dx,

which is the desired expression if we multiply by the number n of players.
For the counterexample, consider the grid distribution f : [0, 1]2 → R+, f ∈

D4 defined in the same fashion as in the proof of Theorem 4.1, by:
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =


2.7468 0.0803 0.1195 0.0696
0.0803 0.3200 0.5271 0.1224
0.1195 0.5271 1.7814 0.5650
0.0696 0.1224 0.5650 1.2705

 .
This distribution satisfies Property V (but not Property VI). Moreover, the first-
price auction with this distribution has a SMPSE and a higher expected revenue
than the correspondent second-price auction (R2 < R1). Again, these claims can
be verified directly through tedious calculations.

A.4 Proof of Proposition 6.1 .

First, we prove that C\A is open. If f ∈ C\A, then

f (x) f
(
x′
)
> f

(
x ∧ x′

)
f
(
x ∨ x′

)
,

for some x, x′ ∈ [0, 1]n. Fix such x and x′ and define K = f (x) + f (x′) +
f (x ∧ x′) + f (x ∨ x′) > 0. Choose ε > 0 such that 2εK < f (x) f (x′) −
f (x ∧ x′) f (x ∨ x′) and let Bε (f) be the open ball with radius ε and center in
f . Thus, if g ∈ Bε (f), ‖f − g‖ < ε, which implies g (x) > f (x) − ε, g (x′) >
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f (x′)− ε, g (x ∧ x′) < f (x ∧ x′) + ε, g (x ∨ x′) < f (x ∨ x′) +ε, so that

g (x) g
(
x′
)
− g

(
x ∧ x′

)
g
(
x ∨ x′

)
> [f (x)− ε]

[
f
(
x′
)
− ε
]
−
[
f
(
x ∧ x′

)
+ ε
] [
f
(
x ∨ x′

)
+ ε
]

= f (x) f
(
x′
)
− f

(
x ∧ x′

)
f
(
x ∨ x′

)
− ε

[
f (x) + f

(
x′
)

+ f
(
x ∧ x′

)
+ f

(
x ∨ x′

)]
= f (x) f

(
x′
)
− f

(
x ∧ x′

)
f
(
x ∨ x′

)
− εK

> εK > 0,

which implies that Bε (f) ⊂ C\A, as we wanted to show.
Now, let us show that C\A is dense, that is, given f ∈ C and ε > 0, there

exists g ∈ Bε (f) ∩ C\A. Since f ∈ C, it is uniformly continuous (because [0, 1]n

is compact), that is, given η > 0, there exists δ > 0 such that ‖x− x′‖Rn < 2δ
implies |f (x)− f (x′)| < η. Take η = ε/4 and the corresponding δ.

Choose a ∈ (4δ, 1− 4δ) and define x (x′) by specifying that their first
⌊
n
2

⌋
coordinates are equal to a−δ (a+ δ) and the last ones to be equal to a+δ (a− δ).
Thus, x∧x′ = (a− δ, ..., a− δ) and x∨x′ = (a+ δ, ..., a+ δ). Let x0 denote the
vector (a, ..., a). For y = x, x′, x ∧ x′ or x ∨ x′, we have: |f (y)− f (x0)| < η.
Let ξ : (−1, 1)n → R be a smooth function that vanishes outside

(
− δ

2 ,
δ
2

)n
and

equals 1 in
(
− δ

4 ,
δ
4

)n
. Define the function g by

g (y) = f (y) + 2ηξ (y − x) + 2ηξ
(
y − x′

)
−2ηξ

(
y − x ∧ x′

)
− 2ηξ

(
y − x ∨ x′

)
.

Observe that ‖g − f‖ = 2η = ε/2, that is, g ∈ Bε (f). In fact, g ∈ Bε (f) ∩ C\A,
because

g (x) = f (x) + 2η > f (x0) + η;

g
(
x′
)

= f (x) + 2η > f (x0) + η;

g
(
x ∧ x′

)
= f

(
x ∧ x′

)
− 2η < f (x0)− η;

g
(
x ∨ x′

)
= f

(
x ∨ x′

)
− 2η < f (x0)− η,

which implies

g (x) g
(
x′
)
− g

(
x ∧ x′

)
g
(
x ∨ x′

)
> [f (x0) + η]2 − [f (x0)− η]2

= 4η > 0,

as we wanted to show.
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