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Quantiles are used for decision making in investment analysis and in the mining, oil 
and gas industries. However, it is unknown how common quantile-based decision making 
actually is among typical individual decision makers. This paper describes an experiment 
that aims to (1) compare how common is decision making based on quantiles relative 
to expected utility maximization, and (2) estimate risk attitude parameters under the 
assumption of quantile preferences. The experiment has two parts. In the first part, 
individuals make pairwise choices between risky lotteries, and the competing models are 
fitted to the choice data. In the second part, we directly elicit a decision rule from a menu 
of alternatives. The results show that a quantile preference model outperforms expected 
utility for 32%–55%, of participants, depending on the metric. The majority of individuals 
are risk averse, and women are more risk averse than men, under both models.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Expected Utility (EU) maximization, first axiomatized by von Neumann and Morgenstern (1944) and Savage (1954), is 
the standard decision model assumed in economic and financial theory for the analysis of choices under risk. The model 
is elegant, general, and amenable to theoretical modeling. The assumption of maximization of average utility, the average 
being a simple measure of central tendency, has intuitive appeal as a behavioral postulate. Nevertheless, the EU framework 
has been subjected to a number of criticisms, mostly arising from experimental evidence that has not been supportive. 
Early studies suggesting that individuals did not always employ objective probabilities, as well as the robustness of the 
Allais (1953) paradox, resulted in Prospect Theory (Kahneman and Tversky, 1979), Rank-Dependent Expected Utility Theory 
(Quiggin, 1982), and Cumulative Prospect Theory (Tversky and Kahneman, 1992).1 Rabin (2000) criticized EU theory on the 
basis of some implausible predictions it generates, arguing that EU would require unreasonably large levels of risk aversion 
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to explain the data from some small-stakes laboratory experiments.2 In response to the critiques it has received, the EU 
model has been successfully generalized to accommodate a variety of behavioral phenomena, a testament to the flexibility 
and tractability of the EU structure.3

In this paper, we are concerned with a different, though also fundamental, potential source of departure from the EU 
Theory. This is the assumption that individuals seek to maximize an average of some function of their payoffs. To us, it is not 
obvious why a decision maker would necessarily seek to maximize a mathematical expectation of a distribution of either 
true or perceived payoffs. An alternative is the possibility that individuals attempt to maximize a quantile of their payoff 
distribution. In other words, they maximize the payoff that they have at most a given probability of failing to attain. The 
simplest example of such a rule is that of maximizing one’s median payoff, the 50th percentile. Another example, familiar 
in risk management, is Value-at-Risk4 targeting, in which a firm attempts to maximize a low quantile (typically the 1st or 
5th percentile) of the payoff from an investment. In oil and gas extraction, executives are frequently concerned with the 
P90, P50 and P10 indicators of a prospective well, which correspond to the levels of production that are exceeded with 90%, 
50% (median) or 10% probability, respectively.5

Manski (1988) was the first to study the properties of quantile preferences (QP), which were later axiomatized by Cham-
bers (2009) and Rostek (2010). In his article, Manski (1988) also discussed a notion of risk aversion for the quantile model, 
which was further developed by Rostek (2010), and is related to the idea of quantile-preserving spread introduced by 
Mendelson (1987). The risk attitude is captured by a single-dimensional parameter, the quantile τ ∈ (0, 1), with lower 
quantiles corresponding to more aversion to risk. QP have several attractive features. An individual’s decision is independent 
of the form of her utility function and thus an optimal choice is relatively easy to compute. The measure of risk attitude 
is simple and intuitive. The structure is robust and flexible, with a family of preferences indexed by quantiles. Recently, 
models of QP have been attracting increasing attention.6 However, to our knowledge, no empirical work has considered the 
incidence of QP in any population.

While the QP model is theoretically appealing and is known to describe decision making in some specific contexts, its 
usefulness ultimately depends on the breadth of its empirical relevance. This paper presents the results of an experiment 
designed to study the incidence of QP maximization, relative to EU maximization, among individuals choosing between 
risky lotteries.

Our experiment has two parts. In the first, participants engage in 242 binary decisions between risky lotteries, and we 
test whether their pattern of decisions conforms more closely to the EU or the QP model. We also estimate the participants’ 
risk aversion parameters under both models. Under EU, the risk aversion parameter is a measure of the curvature of the 
utility function, while under QP, it is the quantile being maximized. We employ structural estimation for both models and 
use a maximum likelihood estimator with a parametric functional form for the underlying latent choice models.

In the second portion of the experiment, we directly elicit individuals’ intended choice rules. Six alternative decision 
rules are presented to participants in each period. Three of the rules involve the maximization of EU and three are quantile 
maximization rules. We ask subjects to choose one of the rules, with the understanding that a bot will employ the rule on 
their behalf in a series of lottery choice tasks. Our methodology has the features that it elicits the intended decision rule of 
the participant, and that it requires no statistical assumptions to estimate the rule being used, as would be necessary with 
data from choices between lotteries.

Two recent experiments that have taken approaches that are similar, in that they allow the choice of decision rules 
in risky choice tasks, are those of Nielsen and Rehbeck (2020) and Halevy and Mayraz (2020). Nielsen and Rehbeck offer 
individuals the choice of different fundamental axioms of choice, such as the Independence of Irrelevant Alternatives or 
First-Order Stochastic Dominance, that bots can employ on their behalf in risky choice tasks. The participants then make 
pairwise choices between lotteries in a traditional manner. They are then presented with the inconsistencies between the 
rules they chose and the decisions they made in the pairwise tasks and have an opportunity to change their decisions. The 
authors find a strong tendency for individuals to follow the choice axioms and that they view the decisions violating the 
axioms as mistakes. Halevy and Meyraz study how individuals solve an investment portfolio problem. Participants have an 
opportunity to construct their own portfolios and to choose rules for portfolio selection. In a later phase of the experiment, 
they then can choose whether to make their own selections or to apply an investment rule of their choosing. The authors 
find that a two-thirds majority of participants chooses to employ investment rules.

2 Cox and Sadiraj (2006) argue that Rabin’s critique is only valid if participants in experiments fully integrate the payoffs that they earn in the experiment 
with their overall wealth. That is, Rabin’s critique is valid for agents maximizing the expected utility of their overall wealth, but not of their current 
income. The fact that experimental procedures typically are intended to achieve isolation from participants’ experience outside the laboratory makes this 
counterargument more compelling for experimental research.

3 Two of the more well-known generalizations are to include the presence of regret (Bell, 1982) and ambiguity in beliefs about probabilities (Gilboa and 
Schmeidler, 1989).

4 See, e.g., Duffie and Pan (1997) and Jorion (2007). The VaR measure is one of the main practical tools for reporting the exposure to risk by financial 
institutions.

5 See, e.g., Apiwatcharoenkul et al. (2016) and Fanchi and Christiansen (2017).
6 Bhattacharya (2009) studies the problem of optimally dividing individuals into peer groups to maximize a quantile of social gains given heterogeneous 

peer effects. Giovannetti (2013) models a two-period economy with one risky and one risk-free asset, where the agent has QP instead of the standard EU 
preferences. de Castro and Galvao (2019) develop a dynamic model of rational behavior under uncertainty, in which the agent maximizes a stream of future 
quantile utilities.
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Two initial remarks are in order regarding our choice of experimental design and the interpretation of our results. The 
first is that we view pitting the QP model against EU as the natural starting point in evaluating the QP model, since EU 
is the standard model employed in economics. If the QP model performs well against EU, it can be tested against other 
models in follow-up work. The second regards what a reasonable standard of performance is. We do not expect QP to 
describe every individual’s decisions, or even the decisions for a majority of participants, better than EU. However, if the 
QP model describes even a substantial minority of individuals at least as well as EU, then it should be taken seriously as 
a descriptive model of behavior. On the other hand, if very few individuals can be classified as QP maximizers, it would 
suggest that QP maximization is confined to a few special situations, rather than a widely and commonly employed decision 
model.

We use statistical classification methods to compare the capacity of the two models to describe participants’ behavior in 
the first part of the experiment. First, we classify individuals as users of the QP or EU model based on the models’ ability 
to predict their decisions, given their own estimated parameters for each model.7 We find that a considerable minority of 
participants, 32%–42% depending on the classification criteria, behave as QP maximizers rather than EU maximizers.8 Second, 
we classify participants based on both a proportion test and a model selection test (Schennach and Wilhelm (2017)). The 
results show that 43%–55% and 48%–49% of participants are classified as QP maximizers under the two tests, respectively.

The individual risk attitude estimates suggest considerable heterogeneity among participants. The average estimated 
quantile that is being maximized is 0.42, and a majority of subjects are risk averse. Most individuals, about 80%, have 
quantile estimates between 0.3 and 0.6.9 For the EU model, we estimate the Power Utility version of the CRRA utility 
function, given by u(x) = xγ .10 Our average estimate is γ = 0.87, closely in line with the existing experimental literature 
(see Harrison and Rutström (2008) for a review).11

The design of our experiment allows us to consider whether the estimates differ between genders. We find that women 
are significantly more risk averse than men on average under the EU model, a result in agreement with much of the previous 
literature (see Eckel and Grossman, 2008). We also obtain an analogous result for the QP model, in that women maximize 
significantly lower quantiles than men on average, a pattern consistent with greater risk aversion on the part of women.12

The data from the second part of the experiment is also used to classify subjects as QP or EU maximizers, on the basis 
of their stated preferred decision rule. Here, no statistical method is required for classification, and a mere count of their 
choices can be used with varying levels of tolerance for deviations from the models. The results concur with the estimates 
from the first part of the experiment, and show that a significant number of subjects, in the range of 40%–50% depending 
on how it is measured, are quantile maximizers rather than EU maximizers.

The results illustrate the empirical relevance of QP. A very substantial minority of our participants exhibits behavior that 
is more consistent with the QP than the EU model. The strength of the empirical support for QP stands in contrast with the 
scant attention that quantile models have received in decision science. In our view, the incidence of quantile maximization 
that we have observed justifies the continued exploration of the properties of QP and their implications for economic and 
financial decision making.

The remainder of the paper is structured as follows. Section 2 reviews the QP model. Section 3 discusses the design 
and implementation of the experiment. In Section 4, we describe and discuss the main results for the first part of the 
experiment, and Section 5 further studies how the results correlate with gender. Section 6 presents results pertaining to the 
decision rules chosen in the second portion of the experiment. Finally, Section 7 concludes.

2. Quantile model

This section describes the quantile model. In Section 2.1, we review the definition of quantile preferences (QP) and the 
model’s notion of risk attitude. In Section 2.2, we discuss pairwise lottery decisions under QP.

7 Harrison and Rutström (2009) discuss the possibility of a situation in which several latent behavioral rules coexist in a population. Specifically, they 
estimate a mixture model in which individuals may be either Expected Utility Maximizers or Prospect Theory adherents. They estimate that 55% of 
participants are better described by EUT and 45% by Prospect Theory.

8 In Section 3 of the Online Appendix, we report results using out-of-sample accuracy rate predictions, which suggest a QP maximizer proportion of 
39%–44%.

9 Given that a parametric specification is used in the estimation, it is important to consider alternative specifications and functional forms, even if the 
ones we have chosen are standard. Results reported in Section 2 of the Online Appendix show that varying the scale parameter underlying the logistic 
likelihood function does not qualitatively affect the results.
10 See Wakker (2008) for a discussion of the properties of the CRRA utility function.
11 Tversky and Kahneman (1992) and Abdellaoui et al. (2008) estimate the Power utility specification and obtain median estimates of γ = 0.88 and 
γ = 0.86, respectively. These are very close to ours. Other studies estimate a CRRA utility function of the form u(x) = x1−ρ

1−ρ . Some of the resulting 
estimates are ρ = .61 (Hey and Orme (1994), sample median), 0.15 − 0.68 depending on the stakes (Holt and Laury (2002), sample median), 0.26 − 0.54
(Harrison et al. (2005), average estimate), and 0.89 (Noussair et al. (2014), pooled estimate for representative individual). These are similar to ours in that 
they reflect a moderate degree of risk aversion, with estimates lying between risk neutrality ρ = 0 and u(x) = ln(x), (the limit as ρ → 1).
12 We also find that results are affected by a modest change in stakes; see Section 4 of the Online Appendix. As the stakes increase, estimates of the 

CRRA model under EU show greater risk aversion, which is also consistent with previous work (Holt and Laury, 2002; Harrison et al., 2005). In contrast, 
the estimated quantile maximized is not affected by the modest changes in monetary stakes that are present in our experiment.
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2.1. Quantile preferences

Consider a random variable X, and let FX denote its cumulative distribution function (CDF), that is, FX(α) ≡ Pr[X �α]. 
The quantile function Q : [0, 1] →R=R ∪ {−∞, +∞} is the generalized inverse of F:

Qτ[X]≡
{

inf{α ∈R : FX(α)� τ}, if τ ∈ (0, 1]
sup{α ∈R : FX(α) = 0}, if τ= 0.

A well-known and useful property of quantiles is “invariance” with respect to monotonic transformations, that is, if g :R →
R is a continuous and strictly increasing function, then Qτ[g(X)] =g (Qτ[X]).

Quantile preferences (QP), which have been axiomatized by Chambers (2009), Rostek (2010), and de Castro and Galvao 
(2021), are described by the following relation:

X� Y ⇐⇒ Qτ [u(X)]� Qτ [u(Y)] .

Since quantiles are not affected by monotonic transformations, QP are invariant with respect to the utility function. Let 
u(X), where u :R →R, be a continuous and increasing utility function describing an individual’s preferences. Then, for a 
given quantile τ ∈ (0, 1), the optimization problem is

X∗ ∈ arg max
X∈R∗

Qτ [u (X)] ⇐⇒ X∗ ∈ arg max
X∈R∗

Qτ [X] , (1)

where R∗ ⊂ R is the subset of random variables (lotteries) available. Equation (1) shows that the quantile optimization 
problem using a given utility function is equivalent to maximizing the quantile obtained directly from the distribution of 
the outcome variable. Hence, the optimal choice under QP does not depend on any particular specification of the utility 
function.

The risk attitude under QP is determined by τ. It can be shown that an agent with a quantile given by τ is more risk-
preferring than another agent with quantile τ ′ if τ > τ ′ , independently of his or her utility function. In other words, a 
decision maker that maximizes a lower quantile is more risk averse than one who maximizes a higher quantile. Thus, under 
QP, risk attitude is defined by the quantile that one maximizes rather than by the concavity of the utility function. This is 
formalized in Section 1 of the Online Appendix using the notion of quantile-preserving spread introduced by Mendelson 
(1987). The Online Appendix also provides a formal definition and further details regarding risk attitude under QP.

2.2. Decision between pairwise risky lotteries under quantile preferences

We now describe the decision of an agent maximizing a given quantile τ when making a pairwise choice between two 
risky lotteries. Consider a choice between two lotteries A and B. The decision of a QP maximizer is based on evaluating the 
difference between the two lotteries at a given quantile τ. If we understand A and B as random variables, this difference 
is:

ΔQ(τ) = Qτ[B] − Qτ[A].

The agent maximizing quantile τ prefers B to A when, for that τ, the payoff of lottery B is larger than A. That is,

ΔQ(τ) = Qτ[B] − Qτ[A]> 0.

To illustrate this, we consider an example of a decision taken when employing QP. There are two lotteries, A and B, 
that each have two possible payoffs, {a1, a2, b1, b2} and corresponding outcome probabilities p and q, such that:

• Lottery A yields a1 = 6 with probability p, and a2 = 10 with probability 1 −p.
• Lottery B yields b1 = 2 with probability q, and b2 = 16 with probability 1 −q.

This lottery can be represented graphically, as illustrated in Fig. 1.
The calculation of ΔQ(τ) = Qτ[B] − Qτ[A] depends on the quantile τ, the payoffs {a1, a2, b1, b2}, and the probabil-

ities (p, q). Specifically,

ΔQ(τ) =

⎧⎪⎪⎨
⎪⎪⎩

b1 − a1, if τ� min{p,q}
b1 − a2, if p < τ� q

b2 − a1, if q < τ� p

b2 − a2, if τ > max{p,q}.

(2)

To make the example more specific, fix the quantile at the median, τ = 0.5, and the outcome probabilities at p = 0.3
and q = 0.1. The quantile functions of lotteries A and B are plotted in the left panel of Fig. 2. Lottery A (solid line) pays 
a1 = 6 with probability 0.3 and a2 = 10 with probability 0.7, and lottery B (dashed line) pays b1 = 2 with probability 
25
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Lottery A

a2 = 10

a1 = 6

1 −p

p

or

Lottery B

b2 = 16

b1 = 2

1 −q

q

Fig. 1. Lottery Choice in Task L1.
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Fig. 2. Quantile function of lotteries A (solid line) and B (dashed line). The left plot considers p = 0.3 and q = 0.1. The right plot considers p = 0.3 and 
q = 0.8.

0.1, and b2 = 16 with probability 0.9. The solid vertical line at 0.5 represents the quantile of interest. To complete the 
example of an agent maximizing the median, τ = 0.5, and choosing between lotteries A and B, we compute ΔQ(τ). The 
calculation is simple and only requires one to subtract the quantile of A from that of B. From the left panel in Fig. 2, we 
can see that ΔQ(0.5) = Q0.5[B] − Q0.5[A] = 16 − 10 = 6. Therefore, the agent chooses lottery B.

Suppose now that we slightly modify the lotteries by changing the probability q in lottery B, so that we have:

• Lottery A: a1 = 6 with probability p = 0.3, and a2 = 10 with probability 1 −p = 0.7;
• Lottery B: b1 = 2 with probability q = 0.8, and b2 = 16 with probability 1 −q = 0.2.

The quantile functions of the new A and B lotteries are displayed in the right panel of Fig. 2. Lottery A (solid line) pays 
a1 = 6 with probability 0.3 and a2 = 10 with probability 0.7, and lottery B (dashed line) pays b1 = 2 with probability 0.8, 
and b2 = 16 with probability 0.2. In this case, we can see that the calculation of ΔQ(0.5) for the median (solid vertical 
line) is ΔQ(0.5) = Q0.5[B] − Q0.5[A] = 2 − 10 =−8, and hence, the agent chooses lottery A.

3. The experiment

The experiment consisted of 8 sessions conducted at the Economic Science Laboratory at the University of Arizona, in 
February and March, 2020. All procedures received prior approval from the Institutional Review Board at the university. The 
61 participants in the experiment were all undergraduate students at the university, who were recruited from a subject 
pool maintained by the Laboratory. 52.5% of the subjects were male, and 50.8% of them were majoring in Business or 
Economics.13 The average cognitive reflection test (CRT) score (see Frederick, 2005) was 1.1 out of a maximum of 3. The 
experiment was computerized and used the ZTree platform.

A session consisted of ten periods. Periods 1 and 2 were referred to as Part 1 of the session. At the outset of the session, 
the instructions for these two periods were read and the two periods took place. Afterward, the instructions for Part 2 of 
the session, consisting of Periods 3–10 were read. Participants did not receive any feedback regarding the outcome of their 
choices until the session ended. The subjects then completed Periods 3–10. The instructions are available in Section 6 of the 
Online Appendix.

13 The number of participants in our experiment gives us the power to detect a medium-sized difference (0.5 standard deviations) in risk aversion param-
eters between men and women, given a one-sided hypothesized difference, of 0.61. One-sided hypotheses are appropriate here for a gender comparison in 
light of a body of previous work finding that women are more risk averse than men, and the lack of evidence of the opposite effect. As we show later, 
we do observe highly significant gender differences in risk aversion estimates under both models with the sample size we have. The power to detect a 
medium-sized difference in risk aversion estimates between two different tasks within our experiment, where the comparison can be made within-subject, 
is 0.97 for a two-sided hypothesis.
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Table 1
Lottery Payoffs For All Periods.

Task (payoff vector) Lottery A Lottery B Description

a1($) a2($) b1($) b2($)

L1 6 10 2 16 Used in Period 1 or 2
L2 6 10 2 24 Used in Period 1 or 2
L3 6 10 2 16 Same as L1
L4 6 10 2 24 Same as L2, L3’s b2 + 8
L5 3 5 1 12 50% of L4
L6 8 10 6 17 L5+5
L7 8 10 0.5 19.25 HL lotteries
L8 8 10 0.5 9.25 L7’s b2 − 10
L9 12 15 0.7 28.75 150% of L7
L10 13 15 5.5 24.25 L7+5

3.1. Periods 1 and 2

In each one of Periods 1 and 2, subjects made 121 separate decisions between two lotteries: called A and B. For ease of 
notation, we denote the tasks used in the two periods of Part 1 of the session as L1 and L2. The payoffs in the two tasks are 
given in Table 1. In the table, L3–L10 refer to the payoffs in Period 3–10, which will be described in Section 3.2. The payoffs 
from lottery A were a1 = 6 and a2 = 10 in both L1 and L2. However, those from lottery B were b1 = 2 and b2 = 16 in 
L1, and b1 = 2 and b2 = 24 in L2. In each of the 121 decisions of a period, the participant made a choice between Option 
A, which yielded a1 with probability p and a2 with probability 1 −p, and Option B, which yielded b1 with probability 
q and b2 with probability 1 −q. The probabilities of the relatively low payoffs under each lottery, p and q, took on values 
from the set {0,0.1,...,0.9,1}. Each of the 11 possible values of p was paired with each possible value of q in exactly one 
decision, generating 11 × 11 = 121 decisions in each of the first two periods.

To control for any order effect, the sequence of the pairwise choice lottery was counterbalanced. That is, we assigned 
the order of the lottery pairs L1 and L2 in the first two periods to participants on a random basis, with about one half of 
subjects receiving each order.14 The 121 decisions within a period were presented in random order on 11 separate computer 
screens, with 11 decisions displayed on each screen.

As described in Section 2.2, we are able to identify the quantile of interest by keeping the payoffs {a1, a2, b1, b2}

constant and varying the associated probabilities (p, q). In addition, the difference in the high payment b2 in lottery B
between the two periods allows us to look at a specific comparative static. This is the effect of changing exactly one of 
the possible outcomes. If individuals use the same quantile independently of the magnitude of payoffs involved, decisions 
would be identical in the two periods. However, it is known that on average individuals tend to become more risk averse as 
the monetary stakes of the gambles they are confronted with increase, when risk aversion parameters are estimated under 
the assumption of expected utility. An analogous pattern, less risk taking behavior as stakes increase, for quantile decision 
makers, would mean that lower quantiles would be employed at higher stakes.

3.2. Periods 3–10

In Periods 3–10, participants were presented with the payoffs {a1, a2, b1, b2}, indicated as L3–L10 in Table 1. In each 
period, they were offered a menu of six decision rules, and were required to specify a rule from the menu for a computer 
robot to use on their behalf. The computer then made 121 decisions of the form that participants made in Periods 1 and 2, 
based on the rule participants specified. The six decision rules were the following:

• Maximize average earnings (EN)
• Maximize the average square root of earnings (EA)
• Maximize the average square of earnings (ES)
• Maximize the amount of money that you have at least a 50% chance of earning (Q50)
• Maximize the amount of money that you have at least a 75% chance of earning (Q25)
• Maximize the amount of money that you have at least a 25% chance of earning (Q75)

We denote the six decision rules as EN, EA, ES, Q50, Q25, Q75, respectively. EN, EA and ES apply the expected utility 
(EU) model with varying degrees of risk aversion. Specifically, EN orders the robot to make those choices that maximize 
the expected value of a risk-neutral utility function u(x) = x. EA commands the bot to maximize the expectation of a 
risk-averse utility function u(x) =

√
x, and ES does so for a risk-seeking utility function u(x) = x2. Q50, Q25 and Q75 

14 As a result, 33 out of 61 participants received L1 in Period 1 and L2 in Period 2. The remaining 28 participants saw L2 in Period 1 and L1 in Period 2.
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specify three different quantile preferences (QP) rules. Q50 orders the robot to maximize the participant’s median payoff. 
Q25 and Q75 instruct the bot to maximize the 25th and 75th percentiles, respectively.15

The description of the choice rules is longer and arguably more complex for the EU rules, and this is because EU is more 
complicated than QP. The EU rules require an explanation of how payoffs are transformed by the utility function. This is 
the first attempt, to the best of our knowledge, to describe the decision rules of a bot applying expected utility theory, or 
indeed any completely specified rule of choice under risk, to experimental subjects. Future studies could try to improve on 
this initial attempt. However, because the data are comparable between designs 1 and 2 in terms of how many individuals 
are classified as EU and QP, it appears that the complexity of our descriptions did not create a bias in favor of or against 
the EU or QP models.

To overcome possible order effects in the way the rules were presented, we used two different versions of the instruc-
tions. In the instructions that one-half of the participants received, the EU rules were described first, and for the other half, 
the QP rules were described first. The position of the six rules on participants’ computer screens was randomly reshuffled 
in each period. This was done in an independent random sequence for each individual.16

The potential lottery payoffs in Periods 3–10 are indicated as L3–L10 in Table 1. The order in which each payoff vector 
appeared to subjects was generated randomly and independently, without replacement, for each participant. L3 and L4 are 
the same lotteries used in Periods 1 and 2. The payoffs in L5 are equal to 50% of those in L4. L6 is derived by adding a 
constant of $5 to all payoffs in L5. L7 is proportional, in terms of payoffs, to those in the lotteries employed in the classic 
study of Holt and Laury (2002). L8 is similar to L7 except that b2 is $10 lower. L9 has the payoffs of L7 scaled up by 50 
percent, and L10 adds a constant of $5 to all payoff levels of L7.

We illustrate the decisions taken under the EN, EA, ES, Q50, Q25 and Q75 rules in Fig. 3. The shaded area of each 
individual panel indicates the combinations of probabilities p and q for which lottery B is chosen in L1, according to the 
decision rule depicted. We can see from the figure that, as risk tolerance under either QP or EU increases, the choice of 
lottery B becomes more likely. Nevertheless, the choices taken under the two models do exhibit substantial differences.

To describe the rules in a manner that participants could be expected to understand, we chose our phrasing very care-
fully. The instructions are available in Section 6 of the Online Appendix. To describe a rule that maximized u(x) =

√
x, 

we wrote “This rule will take each possible amount of money you could earn, and give it a point score equal to the square root of the 
payment. It then makes a choice to maximize the average number of points you get. In other words, it calculates the average square 
root of the amount of money that you would receive under each choice, and always decides for the choice that has a higher average 
square root of the payment.” Similar language was used to describe maximization of u(x) = x2.

Describing a quantile maximization rule is also not straightforward. For example, we chose the following language to 
represent the rule where τ = 0.25: This rule will consider each choice and ask the question: “How much money do I have at least a 
75% chance of earning?” It will then decide on the choice that has a higher payment in answer to this question. The responses on the 
quiz administered following the instructions indicate that the task was quite well understood.

3.3. Timing of events and payment

The instructions for Periods 1 and 2 were given at the beginning of the experiment. After participants finished Periods 
1 and 2, the instructions for Periods 3–10 were provided, and were followed by a quiz to check participants’ understanding 
of the decision rules introduced in the new instructions. The experimenter checked the quiz and helped participants to 
correct wrong answers privately. Participants were not allowed to continue until their quizzes were corrected and they 
demonstrated an understanding of the correct responses. Then, Periods 3–10 were conducted, in which participants selected 
decision rules. At the end of the session, participants filled in a brief questionnaire and were paid privately.

The final payment to participants equaled the sum of the $5 show-up fee and the earnings from one of the ten periods 
in the session. The period that counted toward the final payment was determined randomly at the end of the experiment 
by the computer. In the period that counted, one of the 121 decisions in the period was randomly chosen to count toward 
earnings. The average payment was US$16.6.

4. Results

This section reports findings for the first part of the experiment. It is organized in the following manner. Section 4.1 re-
ports summary statistics, the structural estimation methods, and the risk attitude parameter estimates for both the quantile 
preferences (QP) and expected utility (EU) models using the data from the first two periods. In Section 4.2, we use statistical 
classification methods to consider the percentage of individuals that adhere more closely to each model.17

15 The decision made under the Q50 rule is slightly different from the one maximizing τ = 0.5, because of the discontinuity of probabilities in the 
experiment. More precisely, Q50 can be viewed as maximizing the 0.5 +ε quantile, or τ = 0.5001. We choose this wording to describe the quantile rules 
to facilitate the participant’s comprehension.
16 Shaw et al. (2000) show that individuals prefer locations in the middle of the physical space. In their study, they found that most participants chose 

the middle item from a set of three highlighters and on survey responses. They also found that most participants selected the middle chair from a row 
of three chairs to sit on. Because of this preference for locational centrality, we scrambled the location of the different choice options on the screen from 
period to period, and from subject to subject, to ensure that centrality effects did not affect the likelihood that the different rules were chosen.
17 The p-values reported in our analysis are not corrected for multiple comparisons.
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Fig. 3. Choices of lottery B over lottery A in L1 based on the decision rule specified. (a) EN with γ = 1, (b) EA with γ = 0.5, (c) ES with γ = 2, (d) Q50 
with τ = 0.5, (e) Q25 with τ = 0.25, (f) Q75 with τ = 0.75. The darker color represents choosing lottery B for the cell, while the lighter color indicates 
choosing lottery A. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

4.1. Risk attitude parameters

4.1.1. Summary statistics of periods 1 and 2
In each of the first two periods, every participant makes 121 decisions between lotteries A and B. Fig. 4 provides heat 

maps that summarize the observed choices. The figure shows the proportion of the participants choosing lottery B over A
in each decision as a function of the probabilities p and q. The figure divides the data into five proportion intervals: [0, 0.2), 
[0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1], which are represented with five different color shades. A darker color corresponds to 
a higher proportion of choices of B. The left panel of the figure shows the combined results for Periods 1 and 2. The middle 
and right panels display separate results for tasks 1 and 2 (L1 and L2), respectively.

A comparison of the observed choice results in the left panel of Fig. 4 with the theoretical patterns in Fig. 3 gives 
the impression that the representative individual’s decisions lie somewhere between the EU and QP models, and display a 
considerable aversion to risk. A contrast between the middle and right panels in Fig. 4 shows that there are more choices of 
lottery B in L2, where b2 is larger, than in L1. This is consistent with substitution toward lottery B when it has a greater 
expected value. As we shall see later, however, the difference is smaller than would be predicted if the coefficient of risk 
aversion γ were the same in the two tasks, and the estimated coefficient is smaller for L2 than for L1, indicating more 
risk aversion in L2. The relatively low responsiveness to the change in b2 is also consistent with a fraction of participants 
employing the QP model, which predicts no difference in choices between the two tasks.

4.1.2. Estimation method
We estimate the risk aversion parameters for both the QP and EU models using structural maximum likelihood estimation 

methods.18 Under the assumption of EU, a utility function must be specified. We assume constant relative risk aversion 
(CRRA), with the specific power functional form,

u(x) = xγ. (3)

18 An alternative would be to estimate a mixture model, allowing choices to be characterized by EU and QP. See Harrison and Rutström (2009) for a 
mixture approach in the context of EU and prospect theory.
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Fig. 4. Heat maps for observed choices of lottery B over lottery A. The left panel contains the pooled data for Periods 1 and 2. The middle panel shows 
the data for L1, where b2 = $16, and the right panel the data for L2, where b2 = $24.

The variable x is the monetary payoff and γ is the risk aversion parameter to be estimated. We choose the CRRA functional 
form for two reasons. The first is that it is the most widely employed in economics and this facilitates a comparison of our 
estimates with others in the literature. The second is that it has one parameter, and as such, can be readily compared in 
terms of fit to the QP model without necessitating a correction for a different number of parameters in the two models.19

We follow the literature in estimating the parameter γ. We use a latent model with an error term together with a maximum 
likelihood estimator (MLE). We omit the details of the statistical model for the EU model because we use an analogous 
procedure for the τ parameter of the QP model, which we describe in detail below. We refer the reader to, e.g., Harrison 
and Rutström (2008) and Moffatt (2016) and references therein for details of the estimation procedure for the EU model.

With regard to the risk attitude parameter for the QP model, the quantile τ, recall from Section 2.1 that QP are invariant 
with respect to the utility function. Hence, it is not necessary to specify any particular parametric functional form of utility 
to estimate the quantile. We adopt the following structural estimation strategy to estimate the parameter τ using MLE.

Let xl,k be the monetary payoff associated with the probability pl,k of the outcome k for lottery l. The payoff xl,k and 
probabilities pl,k are induced by the experimenter, so that the cumulative distribution function for each lottery l is given 
by:

Fl(xl,k) = Pl(Xl � xl,k),

for outcomes k = 1, ..., K. In our experiments, k = 2, and there are two lotteries, so that l = {A, B}.
To compare the lotteries, we employ the framework described in Section 2.2 above. In particular, we specify two lotteries: 

B, the “high risk” lottery, associated with CDF FB , and A, the “low risk” lottery, with CDF FA . We use the quantile 
preserving spread concept, and assume that FB crosses FA from below at the quantile τ∗ , making lottery B riskier than 
A.

Under the QP model, for each lottery pair in task i and τ∗ (crossing point of the CDFs), the choice between lotteries Ai

and Bi is based on the difference of quantiles that is calculated for a candidate estimate of τ by evaluating the differences 
index

ΔQi(τ)≡ Qτ[Bi] − Qτ[Ai]. (4)

Equation (4) indicates that for a fixed quantile τ, an agent chooses Bi over Ai when Qτ[Bi] > Qτ[Ai]. The latent 
index, based on latent preferences, is then linked to the observed choices using a specified CDF, denoted by G(·). In par-
ticular, we follow the literature and use a latent variable model to derive the likelihood function to estimate the parameter 
τ.

We model the latent (unobserved) variable y∗
i for task i as the difference in quantiles plus an error term, and assume 

that the observed binary response variable yi is derived in the following manner.

y∗i =ΔQi(τ) + εi

yi =

{
1, if y∗i > 0 (choose lottery B)
0, otherwise.

Let the CDF of εi be denoted by G. The CDF G, or link function, takes any argument on the real line, in this case 
the difference ΔQ(τ), and transforms it into a number between 0 and 1. Thus, the probability of choosing lottery B, 

19 One popular alternative is the expo-power utility function, u(x) = θ − exp{−βxα}, introduced by Saha (1993). This utility function has two free 
parameters (when θ is fixed as a constant), and allows testing of whether decreasing absolute risk aversion and increasing relative risk aversion are 
present. While this form can typically provide a better fit than CRRA, it would have to be compared to a quantile rule with two parameters, perhaps with 
one parameter indicating how the quantile being maximized varies by income.
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Fig. 5. Histogram of individual τ̂ estimates, all participants (mean=0.42; standard error=0.02).

Prob(choose lottery B) = Prob(yi = 1), which depends on the link function, can be calculated. The choice probability 
can be written as

Prob(yi = 1) = P(εi >−ΔQi(τ)) = 1 −G(−ΔQi(τ))

Prob(yi = 0) =G(−ΔQi(τ)).

To write the likelihood function, suppose we have a random sample (yi , wi) for tasks i = 1, ..., n, with wi =ΔQi(τ). 
For a symmetric link function G, the likelihood is

L(yi,wiIτ) =
∏

i:y=0

(1 −G(ΔQi(τ)))
∏

i:y=1

G(ΔQi(τ)) =

n∏
i=1

G
yi
i (1 −Gi)

1−yi .

Then, the log-likelihood function is given by

�(yi,wiIτ) =

n∑
i=1

[
yi logG(ΔQi(τ)) + (1 − yi) log(1 −G(ΔQi(τ)))

]
. (5)

The MLE of τ is simply the value of τ that maximizes the log-likelihood function in equation (5). The CDF function G(·)
can be specified as, for instance, the Logit (logistic distribution), the Probit (normal distribution), or another distribution.

We remark that, in contrast to the EU case, where the log-likelihood is smooth and differentiable everywhere, the log-
likelihood function in equation (5) is not smooth. Nevertheless, there is existing literature in econometrics establishing 
the asymptotic properties – consistency, asymptotic normality, and bootstrap inference – for this class of semiparametric 
estimators (as the MLE), where the criterion function does not obey standard smoothness conditions. The theories allow for 
non-smooth objective functions of finite-dimensional unknown parameters (e.g., Pakes and Pollard (1989) and Newey and 
McFadden (1994, Section 7)) and both finite-dimensional and infinite-dimensional parameters (e.g., Chen et al. (2003)). In 
addition, Chen et al. (2003) show that bootstrapping for these methods provides asymptotically correct confidence regions 
for finite-dimensional parameters. Throughout this paper, we apply bootstrap procedures, with 1,000 bootstrap repetitions, 
to compute the standard errors of the parameters of interest.

4.1.3. Estimates of risk attitude under both models
We specify a Logit model for the estimation of the parameters in both QP and EU models, so that the link function is 

a logistic distribution with location parameter zero and scale two.20 We first estimate the parameters for each participant 
separately. Fig. 5 presents a histogram of the distribution of quantile estimates τ̂ (risk attitude) from tasks 1–2 together 
(242 decisions). The figure shows that most subjects have an estimated risk attitude below 0.5, indicating that they are 
more risk averse than a maximizer of the median payoff. About 80% of subjects have quantile estimates between 0.3 and 
0.6. The average, over all the quantile estimates, is 0.42, and the sample standard error is 0.02.21 As Fig. 5 demonstrates, 
the distribution is skewed to the right, with relatively few estimates exhibiting risk attitude above τ̂= 0.6.

20 Harrison and Rutström (2008) demonstrate, based on the work of Wilcox (2008) and Wilcox (2011), that CRRA estimates under the error structure we 
assume are sensitive to the scaling of the errors. We have chosen our scale so that the CRRA parameter estimate corresponds closely to that typically found 
in other studies, and apply the same scale to the estimation of the QP model. A scale that is too small makes the likelihood function insensitive to large 
values in the index. In Section 2 of the Online Appendix we present estimates for different scale parameters and discuss their effect on the results.
21 Since the likelihood function for the QP model is not smooth, the quantile estimate used throughout our analysis is the midpoint of the interval in 

which the likelihood function is maximized.
31



L. de Castro, A.F. Galvao, C.N. Noussair et al. Games and Economic Behavior 132 (2022) 22–40
Fig. 6. Histogram of individual γ estimates, all participants (mean=0.87; standard error=0.02).

Fig. 6 shows the distribution of CRRA coefficient γ̂ estimates in (3) using the analogous Logit MLE for the data from tasks 
1–2. The estimates are in line with the existing literature. The average estimate of γ̂ is 0.87, with a standard error of 0.02. 
Relatively few of estimates exhibit γ̂ > 1. Moreover, about 79% of subjects present γ̂ smaller than 0.975, suggesting that 
a large majority are risk averse. About 11% of subjects have γ̂ larger than 1.025 and thus can be classified as risk seeking. 
The remaining 10% of γ̂ is in the interval of [0.975, 1.025] which is essentially risk neutral. The proportions that are risk 
averse, risk seeking and risk neutral are comparable to those in previous studies. This suggests that the scale parameter in 
our estimation is appropriately calibrated for comparison to previous work.

We also compute pooled risk attitude parameter estimates for both the QP and EU, treating the entire sample as one 
“representative” participant. For risk aversion under the EU model, we obtain a point estimate of γ̂= 0.85 with a standard 
error of 0.02. For the QP model, the point estimate is τ̂= 0.35 with a standard error of 0.01. The standard error is computed 
by applying the bootstrap-based cluster robust standard errors of Cameron et al. (2008), with the clustering at the level of 
the individual participant. In other words, assuming that individuals have CRRA utility of the power utility form, the group of 
61 subjects behaves like a representative person with a risk aversion coefficient of 0.85. Analogously, under the assumption 
of QP maximization, the “representative” subject acts as if she is maximizing the 35th percentile of her earnings.

4.2. Comparison of QP and EU models

We now consider the relative performance of the EU and QP models. We use two methods to compare the models. 
First, we classify participants as QP or EU maximizers based on the corresponding statistical model that better describes 
their decisions using classification methodology. Second, we use a model selection test to choose among the parametric 
likelihoods.

For the first comparison measure, we use simple classification methods. We compute a confusion matrix (see, e.g., James 
et al. (2017)) using the Logit model for both QP and EU. A confusion matrix compares the predictions of the statistical model 
with the actual choices for all the observations in the data set. For each of the two models, the first step in computing 
the matrix is to calculate the predictions for all observations for each subject. This is implemented by computing the 
probability P(yi = 1). In our case, choice 1, y = 1, is choosing lottery B. The alternative choice, y = 0, is choosing lottery 
A. Once the parameters have been estimated, it is easy to compute the predicted probability of choosing lottery B for any 
given difference in payoffs. For example, one computes P̂(yi = 1) for every decision i. Nevertheless, since this predicted 
probability is a number between zero and one, to classify an observation as choice 1, we have to specify a threshold. For 
instance, if 0.5 is the threshold, then for P̂(yi = 1) � 0.5 we assign observation i to class 1, otherwise observation i
is assigned to class 0. Finally, these predictions can be compared to the actual choices, and to the percentage of correct 
predictions, and the accuracy rate can be computed.

By constructing the confusion matrix and computing the accuracy rate of both the QP and EU models for each subject’s 
data, we can classify individuals into three categories: EU maximizer, QP maximizer, and tie. The methodology to classify 
a subject into a group simply compares the accuracy rate of the two models. The accuracy rate is defined as the rate of 
the correct classifications – true positive plus true negative – divided by the total number of classifications (see, e.g., Kuhn 
and Johnson (2013) for a discussion on different measures of performance in classification models.) Therefore, first, for each 
QP and EU model, we compute the confusion matrices. Second, for each QP and EU model, we compute its accuracy rate. 
Third, we compare the accuracy rates for both models. If the accuracy rate over all of the decisions is higher for the QP 
model than the EU model, the subject is classified as a QP maximizer. When the contrary occurs, the individual is an EU 
maximizer. A tie happens when the accuracy rates are equal for the two models. The results for the classification appear in 
Table 2 for three different choices of the threshold parameter: 0.4, 0.5, and 0.6. The table shows the number of subjects in 
each category, the percentage classified as QP or EU (excluding ties), and 95% confidence intervals of these percentages.22

22 We compute the confidence intervals using binomial proportions.
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Table 2
Number and Percentage of participants classified as QP Maximizers, EU Maximizers, and Ties. 
Classification based on the accuracy rate of models’ predictions. Percentages are given in 
parentheses, and 95% confidence intervals of percentages are in brackets.

Threshold probability # QP Maximizers # EU Maximizers # Ties

p= 0.40 21 (35.6%) 38 (64.4%) 2
[23.4%, 47.8%] [52.2%, 76.6%]

p= 0.50 19 (32.2%) 40 (67.8%) 2
[20.3%, 44.1%] [55.9%, 79.7%]

p= 0.60 25 (41.7%) 35 (58.3%) 1
[29.2%, 54.1%] [45.9%, 70.8%]

Table 3
Number and Percentage of participants classified as QP Maximizers, EU Maximizers, and Ties. 
Classification based on the test for proportion of accuracy rate of models’ predictions.

Threshold probability # QP Maximizers # EU Maximizers # Ties

p= 0.40 10 (50.0%) 10 (50.0%) 41
[28.1%, 71.9%] [28.1%, 71.9%]

p= 0.50 10 (43.4%) 13 (56.6%) 38
[23.2%, 63.7%] [36.3%, 76.8%]

p= 0.60 11 (55.0%) 9 (45.0%) 41
[33.2%, 76.8%] [23.2%, 66.8%]

The table indicates that a majority of participants are classified as EU under each of the three criteria. However, a significant 
proportion of the subjects who can be classified, between 32% (19 out of 59) and 42% (25 out of 60), adhere to QP. This 
result is a clear indication of the relevance of the QP model.

We also employ a validation set approach as an alternative classification method. In this case, we split the sample into 
training and testing parts. The former sample is used for estimating the model, and the latter for classification. All these 
results are reported in Section 3 of the Online Appendix. We redo Tables 2 and 3 for the validation approach and the results 
are qualitatively similar to those in this section.

Moreover, we compare the two decision models using both parametric and non-parametric within-subject tests for the 
threshold probability p = 0.5. We first subtract the accuracy rate of the EU from that of the QP model for each individual 
to compute a within-subject measure of relative performance of the two models. The sample average for the difference 
is −0.009 with a standard error of 0.006. We then test the null hypothesis that the average difference is equal to zero. 
The corresponding t-test statistic is −1.45 (p-value 0.15), and we cannot reject the null hypothesis, at standard levels 
of significance, that the average difference in the accuracy rates of the QP and EU models is statistically equal to zero. The 
sample median for the difference is −0.017. We test the null hypothesis that this median is equal to zero. A Wilcoxon signed 
rank test yields a test statistic equal to 666.5 (p-value 0.10). Moreover, a paired-sample sign test of the null hypothesis that 
the difference is equally likely to be positive or negative yields a p-value of 0.01. Hence, there is some evidence that the EU 
model describes decisions better than the QP model for a significant majority of participants.23

The classification reported in Table 2 directly compares the accuracy rate in the two models. Next we report results for 
classification after formally testing for the equality of the accuracy from the two observed confusion matrices. Specifically, 
we test for the equality of the proportion of concordant elements in both QP and EU classifications. Define the accuracy 
proportion as π. The null hypothesis is H0 : πQPL = πEUL . This test is performed using the classical approach based on 
the comparison between two proportions at a 10% level of significance. The results are reported in Table 3. The first feature 
in the table is that the number of ties, that is the number of non-rejections of the null hypothesis, is relatively large. When 
examining the percentage of comparisons that reject the null and are classified, the results show evidence that about half 
of the subjects are EU maximizers and half QP maximizers.

The second method we use to compare the relative performance of EU and QP is a model selection test. We apply a test 
recently suggested by Schennach and Wilhelm (2017) for choosing among two parametric likelihoods. This test builds on 
Vuong (1989) and it is a simple method that delivers a model selection criterion based on the Kullback-Leibler (KL) dis-
crepancy and yet only involves a test statistic that is asymptotically normally distributed in all cases (nested, nonnested, or 
overlapping), under the null that the two models fit the data equally well. Therefore, no pretesting is required, complicated 
limiting distributions are entirely avoided, and importantly, the test uniformly controls for size.24

23 For the threshold probabilities of p = 0.4 and p = 0.6, the results for the average and median tests reach the same conclusions as for the p = 0.5 case. 
The results for the paired-sample sign tests have p-values of 0.04 and 0.25, for p = 0.4 and p = 0.6, respectively.
24 Vuong (1989) established that the difference between the KL information criterion of two competing models exhibits a wide variety of limiting distri-

butions, depending on whether the two models are overlapping or not, or whether one of the models is correctly specified or not. As a result, using the 
Vuong’s test typically requires pretesting to establish which distribution to use for the computation of critical values for the tests.
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Table 4
Number and Percentage of participants classified as QP Maximizers, EU Maximizers, and Ties. 
Classification based on the Shennach and Wilhelm (2017) test.

Threshold probability # QP Maximizers # EU Maximizers # Ties

ε= 0 18 (48.6%) 19 (51.4%) 24
[32.5%, 64.8%] [35.2%, 67.5%]

ε= 0.25 19 (47.5%) 21 (52.5%) 21
[32.0%, 63.0%] [37.0%, 68.0%]

ε= 0.5 19 (48.7%) 20 (51.3%) 22
[33.0%, 64.4%] [35.6%, 67.0%]

A model is defined to be better if it is closer to the true distribution in the KL sense. Let Pθ∗
EU

and Pθ∗
QP

be the 
distributions in sets PEU and PQP , which are closest to the true distribution, P0, respectively. Formally, model EU is 
defined to be better than model QP if model EU’s KL distance to the truth is smaller than that of model QP, that is, 
K(P0 : PEU) < K(P0 : PQP). If the two KL distances are equal, then we say models EU and QP are equivalent. The 
procedure proposed in Schennach and Wilhelm (2017) selects the better model based on performing a test of H0 :K(P0 :

PEU) = K(P0 : PQP), that is, models EU and QP are equivalent, against model EU is better, Ha : K(P0 : PQP) >
K(P0 : PEU), or QP is better, Hb :K(P0 : PQP) <K(P0 : PEU). The practical implementation of the test requires the 
choice of a regularization parameter, ε.25 The results are presented in Table 4 for three different choices of ε at a 10% level 
of significance, and show that overall about half of the subjects are QP maximizers and half EU maximizers. These results 
for the Vuong’s type of test are, in terms of percentages, very similar to those using the proportion test discussed in Table 3.

5. Gender effects

In this section, we consider gender differences in the risk attitude estimates and the relative performance of the two 
models.26 As discussed earlier, a substantial fraction of prior studies have found that on average, women are more risk 
averse than men (see, e.g., Eckel and Grossman (2008) for a review). If a similar pattern exists for QP maximization, one 
might expect women on average to have lower τ estimates than men.

Figs. 7 and 8 present histograms of the distribution of the risk attitude parameter estimates for the EU and QP models, 
for females and males separately. Fig. 7 reveals a gender difference in the γ̂ estimates. The top histogram shows that overall, 
females have smaller risk aversion coefficients, and thus are more risk averse, compared to males. The average estimate for 
γ is 0.83 for women and 0.91 for men. The t-statistic for the equality of average γ for males and females is t = 2.81, which 
rejects the null of equality at the 1% level. The tests are one-sided, since there is prior evidence that women are more risk-
averse than men on average. In Fig. 8, we observe an analogous pattern for the QP model. The quantile estimates are more 
concentrated on small values for females. A larger proportion of females, relative to males, has an estimated τ̂ < 0.3, while 
the opposite is observed for τ̂ > 0.6. The average estimate of τ is 0.38 for women and 0.45 for men. The t-statistic for the 
null hypothesis of the equality of average τ for males and females is t = 1.87, so that we reject the null of equality at the 
5% level.27

We now consider whether there are gender differences in the percentage of participants adhering to each model. The 
results are given in Table 5, for different threshold probabilities. The table shows that the QP model fits well for a greater 
percentage of females than males. We formally test whether the proportion of adherents that are female is the same in the 
QP and EU groups. The test statistics for threshold probabilities p = 0.4 and p = 0.5 are −0.76 and −1.29, respectively. 
Hence, we are not able to reject the null hypothesis that the gender ratio is equal in the QP and EU groups. However, the 
test statistic is −2.27 (p-value < 0.03) for the threshold probability p = 0.6. Therefore, there is some weak evidence that 
the percentage of females adhering to QP is greater than that of males.

We also provide classification results by gender using the proportion test for accuracy, and the Schennach and Wilhelm 
(2017) model selection test. The results are provided in Tables 6 and 7, respectively. As in the previous section, these results 
have a larger number of ties. Both tables show a larger number of females for the QP model.

In Section 4 of the Online Appendix we investigate the effect of stakes on the risk attitude estimates.

25 The procedures in Schennach and Wilhelm (2017) require the likelihood functions to be twice continuously differentiable, which is not satisfied in the 
QP. Nevertheless, we include the results here in spite of this technical requirement.
26 In Section 5 of the Online Appendix, we present the results of regressions of QP and EU estimates on gender, the program of study and CRT score.
27 We can also conduct tests for each of the two decision problems separately. For the QP model, the t-statistic for the difference in means between males 

and females, when b2 = 16, is t = 1.69. The t-statistic for the difference in means between males and females for b2 = 24 is t = 1.98. Moreover, for the 
EU model, the t-statistic for the difference in means between males and females when b2 = 16 is t = 2.33, and for b2 = 24, it is t = 2.84. Thus, for both 
QP and EU models, we reject the null hypothesis that the risk aversion parameter is the same for males and females in all cases at the 5% significance 
level.
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Fig. 7. Histograms of individual γ estimates by gender. Female mean= 0.83 and standard error=0.02, male mean=0.91 and standard error=0.02.

Fig. 8. Histograms of individual τ estimates by gender. Female mean=0.38 and standard error=0.02, male mean=0.45 and standard error=0.03.

Table 5
Number of participants classified as QP Maximizers, EU Maximizers, and Ties, by gender. Classification based on 
the accuracy rate of models’ predictions.

Threshold probability # QP Maximizers # EU Maximizers # Ties

Male Female Male Female Male Female

p= 0.40 10 11 22 16 0 2
p= 0.50 8 11 24 16 0 2
p= 0.60 9 16 23 12 0 1

Table 6
Number of participants classified as QP Maximizers, EU Maximizers, and Ties, by gender. Classification based on 
the proportion test of model prediction accuracy.

Threshold probability # QP Maximizers # EU Maximizers # Ties

Male Female Male Female Male Female

p= 0.40 4 6 8 2 20 21
p= 0.50 4 6 9 4 19 19
p= 0.60 5 6 6 3 21 20

Table 7
Number of participants classified as QP Maximizers, EU Maximizers, and Ties, by gender. Classification based on 
the Shennach and Wilhelm (2017) test.

Threshold probability # QP Maximizers # EU Maximizers # Ties

Male Female Male Female Male Female

ε= 0 7 11 12 7 13 11
ε= 0.25 8 11 13 8 11 10
ε= 0.5 8 11 13 7 11 11
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Fig. 9. Histogram of observed rule choices in L3–L10, all participants. The horizontal labels are as follows: EN risk neutral; EA risk averse; ES risk seeking; 
Q50 the median; Q25 the 25th percentile; Q75 the 75th percentile.

Fig. 10. Histogram of observed rule choices in L3–L10 by gender. The horizontal labels are as follows: EN risk neutral; EA risk averse; ES risk seeking; Q50 
the median; Q25 the 25th percentile; Q75 the 75th percentile.

6. What decision model do individuals intend to use?

In this section we analyze the data from Periods 3–10. Recall from Section 3 that in these periods we directly ask 
subjects to choose the decision rule they wish to employ from six available alternatives. The goal is to directly measure the 
intended rule choice of participants. One very important advantage of this new methodology is that there is no requirement 
for a statistical model to analyze the data. We measure the decisions subjects make directly.

6.1. Summary statistics for periods 3 to 10

As discussed in Section 3.2 the rules EN, EA, and ES correspond to decisions within the EU model, whereas rules Q50, 
Q25, and Q75 are implementations of the QP model. Fig. 9 plots the histogram of the decision rule choices of all participants. 
There are two prominent patterns in the figure. The first is that there is a comparable level of choices of EU and QP rules. 
The second is that maximizing expected value (EN) and median payoff (Q50) are the most commonly used rules within the 
EU and QP classes, respectively. These two rules capture risk neutrality in their respective models.

Fig. 10 displays a histogram of the observed rule choices for females and males separately. The figure shows that more 
women choose QP rules than men, while men are more likely to opt for the risk-seeking EU rule than are women. We 
reject the hypothesis that the proportion of females in the QP group is equal to the proportion in the EU group (t =−1.83, 
p-value < 0.1). Thus, we obtain some more evidence that women tend to use quantile rules more than men. Within the 
subset of those individuals who choose EU rules, we reject the hypothesis that there is an equal proportion of men and 
women opting for the ES rule (t =−1.98, p-value < 0.05).

Fig. 11 depicts the decision rule choices for each of the eight Periods L3–L10, separately. Each panel concerns a different 
payoff vector for each period, and the relationships among L3–L10 are summarized in Table 1 in Section 3.2 above. The 
figure shows similar patterns as those in Fig. 9. There is a comparable incidence of choices of EU and QP rules, and the 
most popular rules are EN and Q50. The Q50 rule is the most commonly used in L3, L4, L6, and L9, while EN is most 
common in L5, L8, and L10. L5 and L8 are the lotteries with the lowest stakes. In addition, task L8 is the only one for which 
the quantile-preserving spread relationship does not hold between lotteries A and B. The percentages choosing QP rules in 
the eight tasks L3–L10 are, respectively, 48%, 46%, 38%, 51%, 46%, 38%, 51%, and 56%.
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Fig. 11. Histograms of observed rule choices in L3–L10. The horizontal labels are as follows: EN risk neutral; EA risk averse; ES risk seeking; Q50 the 
median; Q25 the 25th percentile; Q75 the 75th percentile. The numbers in curly brackets indicate the payoff vector {a1, a2, b1, b2}.

6.2. Classification

We classify subjects as QP or EU maximizers based on the decision rules they choose. There is no need to use an 
underlying statistical model, and instead we employ a simple count of their choices. We adopt three different criteria to 
assign participants into three categories: QP maximizer, EU maximizer, and mixture. To satisfy the least strict criterion, a 
subject has to choose a rule from one model in at least 5 of the 8 total periods. If the criterion is not satisfied (in cases 
where an individual chooses EU and QP rules in four instances each), the person is classified as employing a mixture. The 
stricter criteria require a subject to be consistent with one specific model in at least 6 and 7 periods, respectively. Thus, we 
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Table 8
Number and Percentage of participants classified as QP Maximizers, EU Maximizers, and Mixture categories, 
all participants pooled and by gender. Classification based on rules selected in tasks L3–L10. Percentages are 
in parentheses, and 95% confidence intervals of percentages are in brackets.

Number Choices # QP Maximizers # EU Maximizers # Mixture

� 5 19 (39.6%) 29 (60.4%) 13
[25.7%, 53.5%] [46.6%, 74.3%]

� 6 13 (43.3%) 17 (56.7%) 31
[25.6%, 61.1%] [38.9%, 74.4%]

� 7 10 (45.5%) 12 (54.5%) 39
[24.6%, 66.3%] [33.7%, 75.5%]

Male Female Male Female Male Female

� 5 10 9 18 11 4 9
� 6 6 7 11 6 15 16
� 7 3 7 8 4 21 18

Table 9
Number and Percentage of participants classified as QP Maximizers, EU Maximizers, and Mixture categories, 
all participants pooled and by gender. Classification based on rules selected in tasks L3–L10 (excluding L8). 
Percentages are in parentheses, and 95% confidence intervals of percentages are in brackets.

Number Choices # QP Maximizers # EU Maximizers # Mixture

� 4 27 (44.3%) 34 (55.7%) –
[31.8%, 56.7%] [43.3%, 68.2%]

� 5 16 (44.4%) 20 (55.6%) 25
[28.2%, 60.7%] [39.3%, 71.8%]

� 6 12 (50%) 12 (50%) 37
[30%, 70%] [30%, 70%]

Male Female Male Female Male Female

� 4 13 14 19 15 – –
� 5 8 8 12 8 12 13
� 6 5 7 8 4 19 18

allow varying degrees of tolerance of error from the intended decision model under the different criteria. We assume that 
there is an equal likelihood of a QP agent playing EU as an EU adherent playing QP.

The number of subjects in each category, the percentage classified as QP or EU (excluding mixture), and the 95% con-
fidence intervals for the percentages, computed using binomial proportions, are reported in Table 8. The lower part of the 
table displays the data for the number of subjects classified in each group for each gender separately. The table shows that 
while a plurality of subjects has the intention to maximize expected utility, a considerable minority chooses to maximize a 
quantile function. Applying the least strict threshold, 38 individuals choose a rule; of those, about 40% of participants choose 
a quantile rule, while about 60% intend to maximize EU. When we tighten the criterion to � 7, the number of individuals 
classified as using the QP and EU models becomes very similar, with 10 (46%) and 12 (55%) of those classified employing 
each model, respectively. Overall, these results are similar to those in Table 2 and corroborate the evidence from the first 
part of the experiment that a relatively large minority of individuals’ economic decisions are more consistent with quantile, 
than with expected utility, maximization.

The results by gender are given in the lower part of Table 8. They show that for those adhering to the QP model, the 
numbers of males and females are close to equal for the two less strict categories. For the strictest category, there is a 
greater number of females than males. We conduct a formal test of the null hypothesis of equality of the proportion of 
females between the QP and EU categories. Applying the � 5 criterion yields a two-sample test statistic of −0.65, so that 
we are not able to reject the null hypothesis that the models are identical in terms of the proportion of adherents who are 
female. If we apply the � 6 criterion, the test statistic is −1.02. However, when using the � 7 criterion, the test statistic is 
equal to −1.71, sufficient to conclude, at the 10% level of significance, that males are less likely to choose QP maximization, 
despite the low power to reject equality under this strict criterion for what constitutes an observation. This constitutes 
additional weak evidence that women have a greater tendency to employ the QP model than men.

As discussed in the previous section, the quantile-preserving spread relationship does not hold between lotteries A and 
B in task L8. Hence, we recompute the results in Table 8 excluding task L8. In this case, we have a total of seven tasks and 
use 4, 5, and 6 as the number of choices consistent with a model as classification criteria. The results are given in Table 9, 
with the lower part separating the results by gender. When comparing the results between Tables 8 and 9, we see that 
the number of QP maximizers increases substantially when L8 is removed, and about 44% of the total number of subjects 
are classified as QP maximizers for the least stringent � 4 rule, while an equal number are classified as EU and QP under 
the strictest � 6 standard (12 employing each model). The patterns regarding gender in Table 9 are similar to those in 
Table 8, with females having a stronger tendency to employ QP rules than males. We conduct a two-sample test to assess 
the equality of proportions of gender between QP maximizers and EU maximizers. The two-sample test statistics are both 
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Table 10
Level of agreement for the classification of participants in L1 vs. L3, and L2 vs. L4. 
Classification based on the accuracy rate of models’ predictions in L1 and L2 and the 
decision rule chosen in L3 and L4.

Threshold probability L1 vs. L3 L2 vs. L4

p= 0.40 32/61 31/61
p= 0.50 30/61 31/61
p= 0.60 27/61 28/61

−0.60 when applying the � 4 and � 5 criteria, and −1.23 under the � 6 criterion. Thus, we are not able to reject the null 
hypothesis of no gender difference in the use of the QP and EU models in any of the three cases.

While the percentages of individuals who adhere more closely to each model are similar in both parts of the experiment, 
there is no evidence of consistency between the two methods of classification at the individual level. Table 10 reports the 
proportion of individuals for which there is an agreement between how they are classified from their choices in L1 vs. L3, 
and in L2 vs. L4, the two pairs of decisions which have identical parameters. The table reports the percentage classified 
consistency based on the accuracy rate with three different probability thresholds for the first part of the experiment.

The data show that the agreement proportion is not greater than chance. Such instability in fitting decisions in experi-
mental individual risky decision making tasks to models is quite typical. For example, Deck et al. (2013) find little evidence 
of correlation of risk aversion estimates among four different tasks to measure risk aversion (only two pairwise correlations 
out of six are significant). Dave et al. (2010) and Crosetto and Filippin (2016) also find that different techniques to measure 
risk aversion yield very different estimates for the exact same individuals. Both Dave et al. (2010) and Crosetto and Filippin 
(2016) find that individuals are more risk averse under the Holt-Laury than the Eckel-Grossman procedures, the two most 
common risk aversion measurement protocols. Such instability may reflect, at least in part, intentional mixing by individuals 
(Agranov and Ortoleva, 2017). Here, we find that there is similar instability when different techniques are used to classify 
individuals by the decision model that they employ.

7. Conclusion

This paper compared the performance of the standard model of choice under risk, expected utility (EU), with a model 
of quantile preference (QP) maximization. As the EU model requires a choice of the utility function, we have assumed the 
CRRA form, since it is also standard. We considered: (1) the fit of the two models to participants’ binary lottery decisions, 
and (2) the percentage of the time agents chose to employ each model from the description. The EU model provides a 
better fit for a small majority of decision makers, while the QP model outperforms for a considerable fraction, 32%–55% of 
our sample, depending on the classification criterion. In our view, the large fraction using quantile rules justifies continued 
exploration of the properties of quantile models of decision making and their application to economic contexts.28

Of course, this study is only a first step in the evaluation of the model. One might argue that the CRRA functional form 
is not appropriate to employ with EU, and that the mediocre performance of the EU model is due to the assumption of 
CRRA. Perhaps a utility function with more parameters that is known to provide a better fit to laboratory data, such as 
expo-power utility, might perform better. However, it is also not obvious how one could describe expo-power utility in 
terms that participants could understand, as would be necessary for Part 2 of our experiment. Expo-power utility has two 
parameters, and thus is less parsimonious than CRRA. Unless we correct for the different numbers of parameters, it would 
have to be evaluated against an extension of the quantile model with an additional parameter, perhaps one that would 
allow the quantile to vary depending on a measure of the stakes of the lottery payoffs. Indeed, one of the advantages of the 
QP model is that decisions do not depend on the utility function.

Many issues remain to be investigated. In addition to pitting the quantile model against different functional forms un-
der EU, it would be interesting to evaluate it against cumulative prospect theory, or other models that allow probability 
weighting. Again, however, it is unclear how a protocol like that of our Part 2 could be used, because probability weighting 
would have to be explained to individuals who are choosing between decision rules. A model with probability weighting 
and a utility curvature parameter would presumably provide a better fit to the data than EU, which is a special case of the 
model. However, it would be less parsimonious, with more free parameters, than the QP model. Another direction for future 
research would be to offer a ‘no rule’ choice option in the second part of the experiment. This would provide further clarity 
on how well each of the two models explains choices and may allow any other favored decision rules to emerge.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .geb .2021.11.010.

28 We do not argue that a model with a single τ parameter would apply at any level of monetary stakes. Clearly, if we were to consider a case where 
b2 = $1, 000, 000. We presumably would not observe many individuals maximizing the same quantile as they would at b2 = $10. However, the same 
criticism would also apply to CRRA preferences under EU, whose parameter estimates for given individuals are known to differ considerably as the stakes 
of gambles change.
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