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A B S T R A C T   

This paper conducts a laboratory experiment to assess the optimal portfolio allocation under quantile preferences 
(QP) and compares the model predictions with those of a mean-variance (MV) utility function. We estimate the 
risk aversion coefficients associated to the individuals’ empirical portfolio choices under the QP and MV theories, 
and evaluate the relative predictive performance of each theory. The experiment assesses individuals’ prefer
ences through a portfolio choice experiment constructed from two assets that may include a risk-free asset. The 
results of the experiment confirm the suitability of both theories to predict individuals’ optimal choices. 
Furthermore, the aggregation of results by individual choices offers support to the MV theory. However, the 
aggregation of results by task, which is more informative, provides more support to the QP theory. The overall 
message that emerges from this experiment is that individuals’ behavior is better predicted by the MV model 
when it is difficult to assess the differences in the lotteries’ payoff distributions but better described as QP 
maximizers, otherwise.   

1. Introduction 

Portfolio selection is a fundamental topic in economics and finance 
and one of the leading applications of decision theory under uncertainty. 
Modern portfolio theory derives its main results on diversification and 
risk under the important paradigm of the expected utility (EU) theory; 
see, for instance, Cochrane (2005) and Campbell (2017). Nevertheless, 
the EU framework has been subjected to a number of criticisms, mostly 
arising from experimental evidence.1 Investors may also exhibit a pref
erence for positive skewness of returns that is not captured by EU. In 
response to these and other critiques, the EU model has been 

successfully generalized to accommodate a variety of behavioral phe
nomena. Two of the more well-known generalizations are the inclusion 
of regret (Bell, 1982) and ambiguity in beliefs about probabilities (Gil
boa & Schmeidler, 1989). Garlappi, Uppal, & Wang (2007) develop a 
portfolio selection model for an investor with multiple priors and 
aversion to ambiguity. 

Recently, de Castro, Galvao, Montes-Rojas, & Olmo (2021a) studied 
the portfolio selection problem in a model with individuals exhibiting 
quantile preferences (QP). This alternative specification of individuals’ 
preferences has been characterized in early work by Manski (1988), who 
studied properties of a quantile model for individual’s behavior. More 
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recently, QP have been formally axiomatized by Chambers (2009), 
Rostek (2010), and de Castro & Galvao (2020). Mendelson (1987) 
introduced the concept of quantile-preserving spread, which is a notion 
of risk aversion for the quantile model that establishes a parallelism with 
mean-preserving spreads in the standard EU framework. Giovannetti 
(2013) modeled a two-period economy with one risky and one risk-free 
asset, where the agent has QP. de Castro & Galvao (2019) developed a 
dynamic model of rational behavior under uncertainty, in which the 
agent maximizes a stream of the future quantile utilities. de Castro, 
Galvao, Noussair, & Qiao (2021b) is one of the few studies that employ 
an experimental study in which individuals make pairwise choices be
tween risky lotteries to assess the importance of QP and find evidence of 
behavior compatible with the presence of QP for a share of the popu
lation between 30 and 50%. 

There exists a literature on optimal portfolio allocation using labo
ratory experiments. Bossaerts, Plott, & Zame (2007) and Gubaydullina & 
Spiwoks (2009) study portfolio choices allowing for individuals’ het
erogeneity with EU. Charness & Gneezy (2010) and Baltussen & Post 
(2011) investigate diversification in portfolio choice decisions through 
an experiment. Ahn, Choi, Gale, & Kariv (2014) show through experi
ments how individuals have heterogeneity and different risk aversion 
attitudes but also have pessimism or optimism when selecting a portfolio 
using EU. Most of the experimental evidence on portfolio allocation has 
considered the conventional EU framework as the baseline model. 
Within this framework, studies such as Andreoni & Sprenger (2012), 
Brandtner (2013) and Gardner (2019), used the mean-variance (MV) 
utility function for analyzing individuals’ rationality. However, we are 
not aware of experimental studies on optimal portfolio allocation 
focusing specifically on the role of QP and comparing its predictive 
ability against other competing behavioral models such as the EU 
framework. 

In this paper we depart from the EU framework and investigate 
through an experimental exercise the optimal portfolio allocation of 
individuals endowed with QP. We build on the theoretical results on 
optimal portfolio allocation under QP derived in de Castro et al. (2021a). 
These authors explore general conditions under which diversification is 
optimal, and also provide results for specific families of distribution 
functions such as the Normal, the Uniform and Chi-square distributions. 
In contrast to the EU framework, the portfolio allocation with QP is 
usually characterized by two differentiated regimes. The risk aversion 
regime given by values of τ smaller than a threshold τ0 entails diversi
fication between the lotteries comprising the portfolio. On the other 
hand, the optimal allocation for large values of τ is usually characterized 
by a corner solution that entails full allocation into one of the assets in 
the portfolio, usually the asset with highest risk and payoff. This unique 
feature of the portfolio allocation problem under QP can be used to 
motivate the presence of under-diversification found in many portfolio 
choice problems, see Mitton & Vorkink (2007) and references therein. 

A second feature of the portfolio selection problem under QP that 
differs from the standard EU framework is the optimal allocation under 
the presence of a risk-free asset. Whereas the mutual fund separation 
theorem of Tobin (1958) obtained under a MV utility function and, more 
generally the EU framework, predicts a convex combination of the 
risk-free and the risky asset, the optimal allocation under QP predicts 
full allocation to the risk-free asset for high levels of risk aversion and 
full allocation to the risky asset for low levels of risk aversion. This 
theoretical result confirms the lack of diversification predicted by the QP 
model. 

The main objective of the current study is to assess through a labo
ratory experiment the portfolio selection insights from the viewpoint of 
the QP model relative to the MV. In particular, we study the similarities 
and differences between the optimal portfolio choices of MV and QP 
individuals. We consider the MV utility function, but comparisons 
developed in this paper could be extended to other utility functions 
within the EU framework and beyond, as for example, the prospect 
theory. Nevertheless, for simplicity and ease of tractability we restrict to 

the MV utility function that summarizes individuals’ utility as a linear 
function of mean and variance. To compare the optimal portfolio choices 
across theories, we estimate risk aversion coefficients associated with 
the individuals’ empirical portfolio choices under the QP and MV the
ories using minimum distance estimators. We employ these methods to 
construct statistics for model classification, and also adapt the Diebold & 
Mariano (1995) test – originally introduced for evaluating predictive 
accuracy – to our setting for statistically comparing the suitability of the 
QP and MV models.2 

Our experiment simulates a simple portfolio decision exercise and is 
formed of 90 tasks. These tasks were answered by 71 subjects. Each task 
has two assets, either two risky assets or one risk-free and one risky asset, 
that comprise an investment portfolio. The experiment requires in
dividuals to assign weights w1,w2 ∈ [0, 1] to these assets, with w1 + w2 =

1, to optimize their investment strategy. This strategy is not reported by 
participants as part of the experiment. The investment strategy may 
imply maximizing the expected value of their utility function, the ex
pected portfolio payoff or some other moment of its distribution. One of 
the objectives of the experimental study is to infer which theory (i.e. QP 
vs. MV) predicts better individuals’ responses. Subjects for the experi
ment were recruited from undergrads and graduates belonging to the 
Experiment Science Laboratory (ESL) at the University of Arizona. Due 
to ongoing Covid-19 pandemic, the experiments were implemented 
online using Qualtrics over the period December 2020 to February 2021. 
The actual payment to participants is the sum of the payoff of one of the 
90 tasks plus a show-up fee, $5, for participating in the experiment. The 
choice of the actual task for payment is done randomly as in similar 
experiments, see Gubaydullina & Spiwoks (2009), Ahn et al. (2014), and 
Gardner (2019). 

Another important aspect of the experimental exercise is the choice 
of the distribution function for the risky assets. Previous experiments 
have relied on binary lotteries characterized by Bernoulli distributions 
to model the distribution of the payoffs, see Andreoni & Sprenger (2012) 
and Brandtner (2013). Ahn et al. (2014) is one of the few experimental 
papers that go beyond the Bernoulli distribution to characterize the 
payoffs. In this paper, we explore the Uniform distribution function for 
several reasons. First, it is very intuitive and easy to understand by in
dividuals not familiar with advanced probability theory concepts. Sec
ond, it is analytically tractable. In particular, we derive the optimal 
allocation to each asset under both QP and MV theories under the 
assumption that both lotteries follow independent Uniform distribu
tions. Third, we avoid the presence of unbounded tails that yield infinite 
payoffs with some strictly positive probability. Fourth, we can easily 
consider the whole spectrum of combinations between pairs of lotteries. 
These combinations reflect first and second order stochastic dominance 
as particular examples but can also accommodate distributions with 
overlapping payoffs and no stochastic dominance order. 

The data gathered by this experiment are individuals’ portfolio 
weights under a variety of portfolio combinations within the family of 
Uniform distributions. These data allow us to identify and estimate the 
QP and MV parameters for each individual and also to implement the 
Diebold & Mariano (1995) test as a model selection mechanism. The first 
important finding of our experimental study is the suitability of both 
theories to predict individuals’ choices. There are differences across 
individuals and tasks but, in general, both models accurately predict the 
optimal responses of individuals to the tasks. We obtain two different 
conclusions depending on whether we aggregate the results by indi
vidual or by task. The aggregation of results by individual offers support 
to the MV theory suggesting that the overall behavior of the individuals 
participating in the experiment is more aligned with the MV than with 
the QP portfolio theory. The aggregation of results by task provides 
richer information on the behavior of individuals when confronted with 

2 In contrast to the original work of Diebold & Mariano (1995), we use the 
test as a model selection mechanism rather than as a test of predictive accuracy. 
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specific portfolio problems. The evaluation of the results by task shows, 
in general, more support to the QP theory than the MV theory although 
the results depend on the specific task under study. 

The main message that emerges from this experimental study is that 
individuals’ behavior is better predicted by the MV model when it is 
difficult to assess the differences in the lotteries’ payoff distributions. 
Diversification may act as a decision mechanism that individuals use 
when it is not clear how to assess the relative gains/losses of one strategy 
over the other as, for example, when the lotteries’ payoff distributions 
overlap. In these cases, MV preferences seem a safer choice as the 
optimal outcome of these policies usually yield to diversification. In 
contrast, when individuals are able to clearly assess the differences in 
the lotteries’ payoff distributions their portfolio choices are closer to the 
optimal decision of a QP maximizer than of a MV maximizer. Individuals 
are able to maximize over the distribution of the portfolio rather than 
trading expected return for variance. 

The empirical results show evidence that, for pairs of lotteries with 
very different supports and entailing a first order stochastic dominance 
relationship between them, individuals’ portfolio choices are closer to 
the predictions of the QP model (full allocation to the dominant lottery) 
than the MV model. In contrast, when the supports of the lotteries are 
similar but the stochastic dominance relationship still holds, in
dividuals’ choices are closer to the MV strategy, that usually corresponds 
to a diversified portfolio. Illustrative examples of this scenario are A :

U(0, 2) vs. B : U(0,20) and A : U(2,20) vs. B : U(0, 20) for the former 
case, with U denoting the Uniform distribution, and A : U(0, 16) vs. B :

U(0, 20) and A : U(12,20) vs. B : U(0, 20) for the latter case. These tasks 
exercises reveal that individuals’ choices cannot be fully rationalized by 
a single theory. Instead, QP predictions are better suited to explain in
dividuals’ decisions when the differences in support suggest a clear 
stochastic dominance relationship between lotteries. In contrast, as 
these distributional differences vanish, individuals smoothly change their 
objective function and trade expected return for variance despite the fact 
the stochastic dominance relationship between the lotteries still holds. 

We also consider portfolios of lotteries with overlapping supports, 
such as A : U(2,22) vs. B : U(0, 20) and A : U(18, 38) vs. B : U(0, 20). 
Lottery A stochastically dominates lottery B in first order in both cases, 
which corresponds to the optimal portfolio decision under QP and 
moderate levels of risk aversion. The MV theory predicts more diversi
fication than what we observe in the realized individuals’ choices. The 
distribution of the empirical weights seems more in line with the optimal 
portfolio allocation obtained under the QP theory. On the other hand, 
whereas the QP theory predicts full allocation to lottery A the empirical 
weights show some non-negligible allocation to lottery B too. This 
phenomenon is more apparent as the supports of the Uniform distribu
tions corresponding to each lottery are more separated, as in the second 
example above. 

The last set of experiments considers combinations of a risk-free and 
a risky asset. In this case both theories predict full allocation to the risk- 
free asset for high levels of risk aversion, however, as the payoff of the 
risk-free asset and the degree of risk aversion decrease, the MV theory 
predicts full diversification whereas the QP theory predicts a complete 
shift to the risky asset (full under-diversification). These differences are 
reflected in individuals’ responses across tasks in this category. For 
example, for A : 2 vs. B : U[0,20], we find that most individuals allocate 
some weight to the risk-free asset in the range (0,0.25), which is more in 
line with the QP theory than with the MV theory. However, as the payoff 
of the risk-free asset increases, the predictions of the QP model imply full 
allocation to the risk-free asset, which may be too drastic from an in
vestor’s point of view. In these cases, we do observe a positive shift of the 
empirical distribution of weights towards the risk-free asset but this 
increase is smoother than under the QP theory. MV predictions are 
better able to explain individuals’ choices than QP predictions. 

Given these empirical results, the overall message that emerges from 
this analysis is that individuals’ behavior is better predicted by the MV 
model when it is difficult to assess the differences in the payoff 

distribution of the lotteries comprising the portfolio. Individuals behave 
as QP maximizers, otherwise. This result suggests that diversification 
may act sometimes as a decision mechanism that individuals use when it 
is not clear how to assess the relative gains/losses of one strategy over 
the other as, for example, when the lotteries’ payoff distributions 
overlap. In these cases, MV preferences seem a safer choice as the 
optimal outcome of these policies usually yield to diversification. This 
outcome involves fewer exposures to single assets than the QP theory 
even if the latter might lead to superior monetary rewards. In contrast, 
when individuals are able to clearly assess the differences in the distri
bution of payoffs between lotteries their portfolio choices are closer to 
the optimal decision of a QP maximizer than of a MV maximizer. In these 
(simpler) cases, individuals are able to maximize over the distribution of 
the portfolio rather than trading expected return for variance. 

The remainder of the paper is laid out as follows. Section 2 illustrates 
the portfolio selection problem under QP and shows how individuals can 
optimize portfolio allocations under this theory. Section 3 sets up our 
experiment design to obtain individuals’ portfolio allocations. Section 4 
develops the econometric methodology necessary to estimate the risk 
aversion coefficients and test the underlying theories explaining in
dividuals’ behavior. Section 5 discusses the empirical results of the 
experiment and explains the results of the tests across individuals and 
tasks. Section 6 concludes. A separate Online Appendix presents the 
instructions of the experiment, detailed summary statistics of the ex
periments, and the payoffs of all the portfolio combinations under QP 
and MV. 

2. Optimal portfolio choice problem 

This section studies theoretically the optimal portfolio allocation 
problem for individuals with quantile preferences under different as
sumptions on the distribution of the assets’ payoffs. We start by formally 
describing the portfolio selection problem under QP. Let 

Sw =
∑n

i=1
wiri,

be an investment portfolio comprised by n assets with payoffs (returns) 
given by ri. The fraction of wealth allocated to each asset in the portfolio 
is denoted by w ≡ (w1, …, wn), with 

∑n
i=1wi = 1. For illustration pur

poses, we consider portfolios that do not allow short-selling, that is, we 
further assume w ∈ [0, 1]n, but the model can be extended to relax this 
restriction. 

To be consistent with the literature on optimal portfolio theory under 
EU preferences, we assume that individuals are endowed with a utility 
function u(Sw), where u : R→R, for describing individual’s preferences 
on wealth. Then, for a given risk attitude τ ∈ (0,1), the portfolio choice 
problem under QP is 

max
w∈[0,1]n

Qτ[u(Sw)], s.t.
∑n

i=1
wi = 1. (1) 

A well-known and important property of quantiles is its invariance 
with respect to monotonic transformations. More formally, if u : R→R is 
continuous and strictly increasing, then 

Qτ[u(Sw)] = u(Qτ[Sw]). (2)  

It is also important to notice that quantile preferences are in fact inde
pendent of the utility function. Indeed, for any continuous and strictly 
increasing u : R→R, from (2), 

X⪰Y ⇔ Qτ[u(X)] ≥ Qτ[u(Y)]⇔ u(Qτ[X]) ≥ u(Qτ[Y])⇔ Qτ[X] ≥ Qτ[Y], (3)  

with ⪰ denoting a τ-quantile preference. This result shows that the 
utility function plays absolutely no role in defining the preference. We 
can use (2) to make any transformation of u; therefore, we could 
transform a concave utility function into a convex one without changing 
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the preference. Hence the quantile optimization problem (1) using a 
given utility is equivalent to maximizing the quantile obtained directly 
from the distribution of the random variable such that the problem of 
interest becomes 

max
w∈[0,1]n

Qτ[Sw], s.t.
∑n

i=1
wi = 1. (4) 

Our aim is to uncover the optimal portfolio choices under QP and 
assess the similarities and differences with those under the MV para
digm. To illustrate these differences, and for simplicity, in what follows, 
we restrict the analysis to a portfolio of two assets. First, we consider the 
case of two risky assets and, second, we study the optimal allocation 
between a risk-free and a risky asset. Let the portfolio be defined as 

Sw ≡ wX + (1 − w)Y, (5)  

with X and Y continuous random variables, and 0 ≤ w ≤ 1 the portfolio 
weight. First, we present the optimal allocation between X and Y for the 
case of two Uniform random variables. 

2.1. Sw Is a mixture of two uniform random variables 

The case of two Uniform distribution functions is analytically more 
cumbersome than the choice of lotteries with discrete payoff distribu
tions or following a Normal distribution. However, this choice may be 
more intuitive for describing the probability law of the payoffs of each 
random variable for someone without knowledge on financial markets. 
Second, it is analytically tractable. In particular, we present the optimal 
allocation to each asset under both QP and MV theories under the 
assumption that both lotteries follow independent Uniform distribu
tions. Third, we consider lotteries defined by continuous random vari
ables. In this way, we extend most of the literature on portfolio choice 
experiments that considers lotteries with binary payoffs. Fourth, we 
avoid the presence of unbounded tails that yield infinite payoffs with 
strictly positive probability. Finally, we can easily entertain a large 
spectrum of investment scenarios by considering different combinations 
of pairs of Uniform random variables. 

For each lottery the experimenter induces a monetary payoff asso
ciated with the probability of the outcome. Hence, for each quantile τ, 
we can calculate the optimal theoretical portfolio allocation as 

w∗(τ) = argmax
w∈[0,1]

Qτ(Sw).

Consider now the MV case. The optimization problem also has a 
single preference parameter γ ∈ Γ⊂R+. Then, 

w†(γ) = argmax
w∈[0,1]

U γ(Sw) = argmax
w∈[0,1]

(
E(Sw) −

γ
2

Var(Sw)
)
,

where U γ is the mean-variance representation with parameter γ.3 The 
optimal portfolio allocation for X : U[a, b] and Y : U[c, d] two indepen
dent random lotteries with Uniform distributions is given by 

w†(γ) =

⎧
⎨

⎩

w̃(γ) when 0 < w̃(γ) < 1,
0 when w̃(γ) ≤ 0,
1 when w̃(γ) ≥ 1.

(6)  

where 

w̃(γ) =
6[(a + b) − (c + d)] + γ(d − c)2

γ
[
(b − a)2

+ (d − c)2] .

The following paragraphs illustrate these theoretical results on 

optimal portfolio allocation for Uniform distributions with different 
examples. Thus the case of two standard uniform distributions, X : U(0,
1) and Y : U(0,1), is reported in Example 2.1.4 

Example 2.1. Consider X : U(0,1) and Y : U(0, 1), independent. The 
optimal allocation to X under QP is 

w∗(τ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.5, if τ ∈

(

0,
1
2

]

1, if τ ∈

(
1
2
, 1
)

.

In contrast, the optimal portfolio allocation to X under MV is w† in (6) 
with w̃(γ) = 0.5, for all γ ∈ Γ. 

Example 2.2. Consider X : U(0,2) and Y : U(0,1) independent. The 
optimal allocation to X under QP is 

w∗(τ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.5, if τ ∈

(

0,
1
4

]

1, if τ ∈

(
1
4
, 1
)

.

In contrast, the optimal portfolio allocation to X under MV is w† in (6) 
with w̃(γ) =

6+γ
5γ , for all γ ∈ Γ. In this case, even though U(0,2) sto

chastically dominates U(0,1), the optimal portfolio weight w is interior, 
w∗ = 0.5, implying that diversification under quantile preferences is 
optimal for τ⩽1/4. This is an interesting result, because despite the fact 
that X first order stochastically dominates Y, there exists a convex 
combination Sw that dominates both random variables X and Y for low 
quantiles. Notice, however, that this feature is desirable, because the 
independence of X and Y makes a convex combination of the two less 
risky than any of them. For the MV case, the optimal portfolio allocation 
is a function of γ such that for large levels of risk aversion (γ→∞), the 
optimal allocation to X is 0.2. 

Another interesting scenario is the absence of diversification with 
different lower ends of the distributions of X and Y. For the QP case, de 
Castro et al. (2021a) show that the optimal choice is w∗ = 1 for all τ, 
provided that the difference between the two distributions at the left end 
point is sufficiently large. Example 2.3 illustrates this result for the pair 
X : U(0.5,1) and Y : U(0,1). 

Example 2.3. Consider X : U(0.5,1) and Y : U(0,1) independent. 
Then, the optimal allocation to X under QP is w∗ = 1 for all τ ∈ (0,1). In 
contrast, the optimal portfolio allocation to X under MV is w† in (6) with 
w̃(γ) =

3+γ
1.25γ, for all γ ∈ Γ. 

The optimal portfolio allocation under the MV case is similar to the 
QP case. Thus, for large levels of risk aversion (γ→∞), we obtain w̃(γ) =

0.8. Similarly, for low levels of risk aversion (γ→0), the MV theory 
predicts w̃(γ) = 1. 

Nevertheless, the behavior with different lower end points can be 
complex under the QP theory. For instance, it may be the case that the 
optimal choice is w∗ ∈ {0,1} for small τ, it becomes interior for inter
mediate values of τ and then becomes w∗ ∈ {0,1} again for large τ’s. The 
following example illustrates this scenario further. 

Example 2.4. Consider X : U(0.25, 1.25) and Y : U(0,1) independent. 
The optimal allocation to X under QP is w∗ ∈ (0,1) for τ ∈ (0,0.25) and 
w∗ = 1 for τ > 0.25. In contrast, the optimal portfolio allocation under 
MV is w† in (6) with w̃(γ) =

3+γ
2γ , for all γ ∈ Γ. 

The last example considers the remaining possible combination be

3 For a CARA utility function, and normally distributed assets, MV is a special 
case of expected utility preference. See, for example,Sargent (1987), 
p.154–155). 

4 The numerical methods to solve Examples 2.1–2.5 are described in de 
Castro et al. (2021a). 
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tween X and Y. In this case, the support of the random variable X is 
inside the support of Y. Whereas the previous examples represent lot
teries exhibiting first order stochastic dominance, the latter example 
does not. 

Example 2.5. Consider X : U(0.25,0.75) and Y : U(0,1) independent. 

The optimal allocation to X under QP is w∗ ∈ (0, 1) for τ ∈

(

0, 1
2

)

and w∗

= 0 for τ ∈

(
1
2,1

)

. In contrast, the optimal portfolio allocation under MV 

is w† in (6) with w̃(γ) = 0.8, for all γ ∈ Γ. 

Fig. 1 plots w∗(τ) under the QP paradigm for different examples. 

2.2. Optimal portfolio allocation when there is a risk-free asset 

Manski (1988) derives the preferences of a quantile maximizer be
tween two outcomes X and Y when one of the outcome measures is 
degenerate, and finds a complete separation in preferences between the 
degenerate and risky outcome. The deterministic choice is the preferred 
strategy for low quantiles. In contrast, for high quantiles, the risky 
outcome is the preferred strategy. 

In this section, we provide further formality to the example in 
Manski (1988) and frame it in an optimal asset allocation context. We 
assume there is a riskless security that pays a rate of return equal to Rf =

r, and just one risky security that pays a stochastic rate of return equal to 
R with distribution function FR. The portfolio return is defined by the 
convex combination 

Rp = wr + (1 − w)R = r + (1 − w)(R − r),

and the investor’s maximization problem (4) for a specific quantile τ is 
argmaxwQτ[u(r + (1 − w)(R − r))]. Using the monotonicity of the 
quantile process, for a continuous and increasing utility function, the 
investor’s problem simplifies to 

argmax
w

(1 − w)Qτ[R] + wr.

Simple algebra shows that the individual portfolio choice w is then 
given by the following: 

w∗ =

⎧
⎨

⎩

1 when Qτ[R] < r
0 when Qτ[R] > r
any w ∈ [0, 1] when Qτ[R] = r.

The intuition of this solution is simple. For small values of τ the in
dividual’s optimal portfolio choice is w∗ = 1 and corresponds to full 
investment on the risk-free asset. This is so because r > Qτ[R] for any 
combination Rp characterized by 0 < w < 1. For larger values of τ, such 
that Qτ[R] > r, the optimal portfolio decision reverses and yields w∗ = 0. 

For Qτ[R] = r, the QP maximizer is indifferent between the risk-free and 
the risky asset for any w ∈ [0,1] defining the portfolio return. 

In particular, for the example of Uniform distributions discussed 
above, we can consider X = a, with a a fixed payoff, and Y : U(c, d), 
where c ≤ a. The optimal portfolio allocation under QP is 

w∗ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 when Qτ[R] <
a − c
d − c

0 when Qτ[R] >
a − c
d − c

any w ∈ [0, 1] when Qτ[R] =
a − c
d − c

.

The corresponding optimal portfolio allocation for mean-variance 
investors yields 

w†(γ) =

⎧
⎨

⎩

w̃(γ) when 0 < w̃(γ) < 1,
0 when w̃(γ) ≤ 0,
1 when w̃(γ) ≥ 1,

(7)  

where 

w̃(γ) = 1 −
6(c + d − 2a)

γ(d − c)2 .

The outcome of the latter optimal asset allocation problem is known 
in the literature as the mutual fund separation theorem, see Tobin 
(1958). In this setting, there is an interior solution to the portfolio 
allocation problem that is given by a convex combination of a risk-free 
and a risky asset. The allocation to the risky asset depends on the degree 
of risk aversion γ. In contrast, under quantile preferences, the investor 
does not diversify at all. The optimal portfolio specializes in the risk-free 
asset for quantiles below the magnitude of the standarized risk-free rate 
and on the risky asset, otherwise. 

3. Experiment design 

In Section 2, we discussed analytically the optimal allocation be
tween two assets in a portfolio under QP preferences and provide 
illustrative examples. In the following sections, we present an experi
ment to assess with real data individuals’ optimal portfolio choices, and 
compare those choices with the predictions of the QP and MV models. 
This section explains the experiment design. Each experiment session 
has 90 independent decision-making tasks. Each of these 90 tasks cor
responds to an optimal allocation of tokens between two lotteries. The 
list of tasks is explained in detail in Appendix A. Tasks are divided into 
five categories and each category considers a different type of rela
tionship between two independent Uniform distributions, each corre
sponding to a different lottery A and B. Section 3 in the Online Appendix 
also presents graphs with the optimal portfolio allocation w∗ to lottery A. 

Fig. 1. Illustration of Example 2.4 (left panel) and Example 2.5 (right panel).  
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Left panels plot the optimal allocation under the MV framework and the 
right panels plot the optimal allocation under the QP framework. For the 
MV case, the x-axis is given by 1/γ, with γ the risk aversion coefficient, 
and for the QP case,the x-axis is given by τ. 

Table 1 summarizes the composition of the lotteries, stochastic 
dominance relationship between them, and the optimal allocation to 
lottery A under quantile preferences. The optimal allocation under MV is 
given in expression (6). The following paragraphs summarize the cases 
under investigation. 

The first class of experiments in tasks 1 to 20 presents lotteries A and 
B. These lotteries share the same left end point of the distribution. In this 
scenario, lottery B first order stochastically dominates lottery A. 
Example 2.2 above is in this family of lotteries. The optimal allocation to 
A is given by full diversification for risk averse individuals (character
ized by a small τ). For individuals with higher tolerance to risk, the 
optimal allocation under QP is determined by the FSD relationship. 

The second class of experiments in tasks 21 to 35 considers lotteries 
that share the same right end point of the Uniform distributions. In this 
scenario, lottery A first order stochastically dominates lottery B. 
Example 2.3 above is in this family of lotteries. The optimal allocation to 
A is determined by the FSD relationship if a < b/2, otherwise, the QP 
optimal portfolio decision differs from the FSD relationship and implies 
an interior solution given by a convex combination of the two lotteries. 

The third class of experiments in tasks 36 to 55 considers two lot
teries with overlapping supports. In these examples, lottery A first order 
stochastically dominates lottery B. Example 2.4 above is in this family of 
lotteries. The optimal allocation to A is given by full diversification for 
risk averse individuals (characterized by a small τ). For individuals with 
higher tolerance to risk, the optimal allocation under QP is determined 
by the FSD relationship. 

In the fourth class represented by tasks 56 to 69, there is no stochastic 
dominance relationship between the variables. Example 2.5 above is in 
this family of lotteries. The optimal allocation to A is given by an interior 
solution for risk averse individuals (characterized by values of τ ≤ 0.5). 
For individuals with higher risk tolerance (τ > 0.5), the optimal allo
cation under QP is lottery B. 

The last class given by tasks 70 to 90 is given by different combi
nations of a risk-free asset, represented by a fixed deterministic payoff a, 
and a risky asset given by a Uniform distribution. In this case, full 
allocation to the risk-free asset is optimal for values of τ below τ0, with τ0 
= a− c

d− c. Otherwise, the optimal allocation is the risky asset with payoffs 
driven by the Uniform distribution. 

Our online experiments were programmed in Qualtrics. To create a 
setting similar to that of a lab-experiment, we used a Zoom meeting 
room with cameras and informed students they were being observed. We 
did this because student concentration dropped drastically in the pilot 
tests when cameras were off. In addition to observing concentration 
levels, we used the Zoom setting to give students instructions regarding 
the rules of the experiment. The currency used in the experiment was 
USD, and subject earnings were paid after each experiment by Venmo or 

online transfer. We obtained 71 subjects for the experiment. Individuals 
were a mix of undergraduate and graduate students recruited from the 
Experiment Science Laboratory (ESL) at the University of Arizona. Due 
to Covid 19, the experiments were implemented online from December 
2020 to February 2021. The experiment consisted of the consent of 
participating in the experiment (3-5min), introduction for uniform dis
tributions (5–10 min), quiz (5-10min), reading instruction (5–10 min), 
the main experiment (average of 34min), and payment (3-5min). 
Because some of the subjects did not have much background in proba
bility theory or mathematics, we explained the basic concept of Uniform 
distributions and then checked subjects’ understanding with three 
simple questions. This was done prior to the experiment and took about 
15 minutes. The instructions shown to subjects in the experiment are 
found in Section 1 of the Online Appendix. Each session of our experi
ments lasted about one hour and fifteen minutes on average, and the 
main experiment took an average of 34 minutes. There was no time limit 
to complete the experiment; a few individuals took almost an hour to 
complete it. The standard deviation of the time for the experiment, 
shown in Table 2, was 8.59 minutes for males and 9.25 minutes for 
females. 

The experiment proceeded as follows: students were asked three 
questions before the experiment to demonstrate their understanding of 
Uniform distributions. Subjects then received a bonus depending on how 
many of these questions they got correct. If they got 3 out of 3, then $2 
were offered. If 2 out of 3, then $1 was offered, otherwise they received 
no bonus. The average overall score for these questions was 2.54 out of 3 
(84%). See Table 2 for summary statistics on earnings, duration of 
experiment, and quiz score. After the quiz, subjects started the main 
experiment. The investigator gave a short instruction about the experi
ment, and then subjects reread the instructions to reinforce their un
derstanding about the lotteries in each task, how to assign the 100 
tokens, and how their own earnings would be decided as a result of the 
experiment. As mentioned earlier, subjects completed 90 tasks during 
the experiment. These tasks are randomly shown in the screen to avoid 
distractions or a monotonic choice such as (100,0) or (0,100) across 
tasks. The questions are presented on 6 pages with 15 tasks per page. In 
each task, 100 tokens are given to the subject. These tokens can be 
viewed as the weights that subjects allocate to each lottery. They assign 
between 0 to 100 tokens to each lottery such that the sum of the weights 
allocated to the two lotteries is 100. If the sum of weights between 
lotteries within a task is different from 100, the system reports an error 
message and the subject has to reintroduce the allocation of weights to 
the lotteries. 

Individuals’ earnings from taking part in the experiment are given by 
the sum of the bonus from taking the initial quiz, the fixed show-up fee 
of $5, and the earnings from one randomly selected task out of the 90 
tasks completed as part of the experiment. Including the show-up fee of 
$5, subjects obtained an average of $21.16. As an illustrative example, 
suppose the payment-determining task for a subject has two lotteries, 
where lottery A = $6 and lottery B = U[$0, $20]. Assume the subject 
assigns 40 tokens to A and 60 tokens to B. Then, the computer picks a 
random number in the interval [0,20] (for the sake of example, let this 
number be 11). Then, the subject’s payoff will be $6× 0.4+ $11× 0.6 =

Table 1 
The 90 tasks in our experiment.  

Tasks Composition of lotteries Stochastic 
dominance 

w∗(τ) by QP (w∗: 
optimal allocation)  

1 to 
20 

A : U(a, b) and B : U(a, d)
with b < d.  

B FSD A  0.5 if τ≦τ0  

0, otherwise 
21 to 

35 
A : U(a, b) and B : U(0, b)
with a > 0  

A FSD B  1 if a > b/2  
w∗ ∈ (0.5,1), 
otherwise  

36 to 
55 

A : U(a, b) and B : U(c, d)
with a > c and b > d  

A FSD B  0.5 if τ≦τ0  

1, otherwise 
56 to 

69 
A : U(a, b) and B : U(c, d)
with a > c and b < d  

There is no FSD 
between A and B  

w∗ ∈ (0, 1) if τ≦τ0  

0, otherwise 
70 to 

90 
A: a (constant number) 
and B: U(c,d)  

- 1 if τ≦τ0  

0, otherwise  

Table 2 
Descriptive data.   

Total Male Female Non- 
binary 

Subjects 71 35 35 1 

Earnings ($) 21.16 22.62 19.93 13.27  
(5.94) (6.19) (5.27) (-) 

Duration of time for experiment (min) 34.00 33.51 33.80 58.46  
(9.34) (8.59) (9.25) (-) 

Quiz score (out of 3) 2.54 2.8 2.26 3  
(0.84) (0.40) (1.05) (-) 

*Numbers in parentheses indicate standard deviation. 
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$9. Table 2 includes subject earnings and consumed time for the main 
experiment by gender. 

4. Econometric methodology 

In this section we describe the econometric methods to estimate the 
parameter of interest – risk attitude – for both the QP and MV cases, as 
well as the procedure used to compare the fit of these models. 

4.1. Identification 

The identification of the parameters of interest, for both QP and MV 
cases, is achieved by varying the shape and support of the lotteries 
presented to the subjects. Consider the QP case. As discussed in Section 
2, for a given quantile τ and lotteries X and Y, the economic agent 
chooses the weight w. Hence, we are able to identify the τ by using 
different Uniform distribution across tasks, and varying their associated 
support – see, e.g., Examples 2.1–2.5 above. Thus, for a given preference 
parameter τ, we induce different choices of portfolio, and identify the 
parameter from the data. In other words, identification is attained by 
assuming that individuals are endowed with the same quantile inde
pendently of the magnitude of the payoffs involved, and by varying the 
support of the Uniform distributions in the lotteries. This variation in
duces different choices for different tasks. An analogous argument is 
valid for the MV case.5 The previous section and Appendix A discuss the 
different combinations of supports used to elicit the parameters of 
interest. 

4.2. Estimation methods 

We use minimum distance (MD) estimators to estimate the param
eters of interest.6 The MD estimator is very simple to implement in 
practice. In particular, it is computed by minimizing the quadratic dis
tance of an observed variable and its theoretical counterpart. In 
particular, we will minimize the distance using either the quantile or the 
expected value, for QP and MV respectively. 

Consider individuals i = 1,2,…, I. Let j = 1,2,…, J index the J tasks 
each individual face in the experiment. For the experiments in this 
empirical exercise we have I = 71 and J = 90. First, from the experi
ments, we observe data for the choices wij ∈ (0,1), the portfolio selection 
each individual i make for task j. Second, from the theoretical results for 
the portfolio section discussed in Section 2, for each fixed parameter, we 
are able to calculate the optimal choices. Of course, this optimal choice 
depends on the underlying preference risk parameter, which is the 
parameter to be estimated by the MD method. We propose estimators 
based on MD to estimate τi and γi for each individual i. For the latter, we 
will assume that it lies on a compact set Γ, which is assumed the same for 
all individuals. We consider a mean-squared loss function estimator. For 
any portfolio w and task j, we can compute the implied objective func
tion, Qτ(Sj

w) for QP and U γ(Sj
w) for MV. Moreover, we can compute the 

optimal value of the objective function, Qτ[Sj
w∗

j (τ)
] for QP and U γ [Sj

w†

j (γ)
]

for MV. Thus, for each individual, we define 

τ̂ i = argmin
τ∈(0,1)

∑J

j=1

(
Qτ

[
Sj

wij

]
− Qτ

[
Sj

w∗
j (τ)

])2
, (8)  

γ̂ i = argmin
γ∈Γ

∑J

j=1

(
U γ

[
Sj

wij

]
− U γ

[
Sj

w†

j (γ)

])2
, (9)  

for QP and MV, respectively. 
The standard asymptotic properties of MD estimators are established 

in Newey & McFadden (1994). We omit the details for brevity, but 
notice that, for these estimators, the validity of asymptotic results as
sume that J→∞ and independence across tasks. 

To implement the estimators we use a grid search where we consider 
τ ∈ (0, 1) and γ ∈ [0, 20] with a grid size of 2000. 

4.3. Explaining individuals’ preferences using experimental data 

We divide the exercise into classification and testing of individuals’ 
portfolio choices. 

4.3.1. Classification 
We consider the following strategy to compare and classify both 

preferences. The estimators can be compared on the same decision 
choice, i.e. w. We define a minimum distance indicator using 

d̂ ij = 1
[
|wij − w∗

j (τ̂ i)| < |wij − w†
j (γ̂ i)|

]
. (10) 

Equation (10) defines an indicator function that, for each individual i 
and task j, compares the distance of the observed choices wij to the 
theoretical choices using the estimated quantile, w∗

j (τ̂ i), with the cor

responding distance for the MV case. Therefore, the statistic d̂ij provides 
a notion of whether the optimal QP weight is closer to the individual’s 
portfolio choice than the MV weight counterpart. 

We then define the following statistics for the indicator. For each task 
j we can compute the proportion of cases where the QP provides a better 
fit than MV, 

dj =
1
I
∑I

i=1
d̂ ij. (11) 

Similarly, for each individual i, we can compute the proportion over 
the tasks as 

di =
1
J
∑J

j=1
d̂ ij. (12) 

Intuitively, the statistic in (11) provides the proportion of subjects 
such that the decisions are a better fit for the QP for each task j. More
over, the statistic in (12) shows the proportion of tasks that are better 
explained for QP for each individual. 

4.3.2. Testing 
We also formally test which model has a better fit for the observed 

choices. To do so, we use a Diebold-Mariano (DM) testing strategy 
(Diebold & Mariano, 1995). Provided that both estimators can be 
compared on the same loss function, i.e. comparing actual choice and 
optimal choice, then we can evaluate goodness-of-fit measures between 
QP and MV. Define 

ϕij(τ̂ i) =
[
wij − w∗

j (τ̂ i)
]2  

and 

ψij(γ̂ i) =
[
wij − w†

j (γ̂ i)
]2
,

the value of the loss function for QP and MV, respectively. 

5 We are assuming that there is no measurement error in the data, as for 
example, systematic rounding errors.  

6 The minimum distance (MD) estimator dates back to Berkson (1944), 
Neyman (1949), Taylor (1953), and Ferguson (1958), whose among others, 
aimed to produce statistically efficient and computationally tractable alterna
tives to maximum likelihood estimators. Although very simple conceptually, 
MD estimation has been used by many scholars in statistics and econometrics 
since Malinvaud (1970) and Rothenberg (1973). The literature on MD is vast, 
hence we only list a limited set of examples: Amemiya (1976, 1978), Nagaraj & 
Fuller (1991), Lee (1992), Koenker, Machado, Skeels, & Welsh (1994), Newey 
& McFadden (1994), Lehmann & Casella (1998), Moon & Schorfheide (2002), 
and Lee (2010). 
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Consider now the null hypothesis that for a given task j = 1,…, J and 
for a sequence of independent individuals i = 1,2,…, both models have 
the same loss 

Hj
0 : E

[
ϕij(τi) − ψij(γi)

]
= 0,

against one-sided and two-sided alternative hypotheses. The null hy
pothesis states that both preferences representations give the same ex
pected loss, while the alternatives look for systematic differences across 
representations. A positive (negative) sign indicates that MV (QP) is 
better than QP (MV), i.e. QP (MV) has a higher value of the loss function 
than MV (QP). 

Then, define the following test statistic 

DMj := I1/2
1
I

∑I
i=1

[
ϕij(τ̂ i) − ψij(γ̂ i)

]

̅̅̅̅̅
Vj

√ , (13)  

where Vj = 1
I
∑I

i=1Var[ϕij(τ̂ i) − ψ ij(γ̂ i)]. One can show that under the null 

hypothesis Hj
0, 

DMj →d N(0, 1), as I→∞,

and hence the critical values are taken from a simple standard normal 
distribution. 

In order to implement the test in (13) one needs a consistent esti
mator of the variance Vj. We consider the following estimator 

V̂ j = V̂ ϕj + V̂ ψj − 2Ĉϕψj, (14)  

with 

V̂ ϕj =
1
I

∑I

i=1

(
ϕij(τ̂ i) − ϕj

)2
,

V̂ ψj =
1
I

∑I

i=1

(
ψij(γ̂ i) − ψj

)2
,

Ĉϕψj =
1
I
∑I

i=1

(
ϕij(τ̂ i) − ϕj

)(
ψij(γ̂ i) − ψj

)
,

where ϕj =
1
I
∑I

i=1ϕij(τ̂ i) and ψ j = 1
I
∑I

i=1ψ ij(γ̂ i). 
In a similar fashion one can produce DM statistics for a given indi

vidual i = 1,…, I for a sequence of independent tasks j = 1,2…, using 
the number of tasks to compute the asymptotic results. That is, under the 
null hypothesis Hi

0 : E[ϕij(τi) − ψ ij(γi)] = 0, it follows that 

DMi := J1/2
1
J

∑J
j=1

[
ϕij(τ̂ i) − ψij(γ̂ i)

]

̅̅̅̅̅
Vi

√ →d N(0, 1), as J→∞, (15)  

where Vi = 1
J
∑J

j=1Var[ϕij(τ̂ i) − ψ ij(γ̂ i)]. 

5. Empirical results 

5.1. Data description 

We have 90 tasks per individual and 71 individuals. The total is thus 
6390 selections. Fig. 2 reports the selected weights by task and indi
vidual, respectively. These scatter plots provide a rough description of 
the heterogeneity across tasks and individuals. All answers are in the 
graphs, albeit some are repeated (i.e.one task could have more than one 
w value or one individual could have selected the same w in different 
tasks). In both cases we observe that choices are not systematically fixed 
on a given value of w, but that there is heterogeneity on individuals’ and 
tasks’ responses. 

Now, we discuss the parameter estimates associated to individuals’ 
preferences. For QP we consider the estimated individual-specific 
quantile indexes {τ̂ i}

71
i=1 in equation (8). The left panel of Fig. 3 pre

sents the histogram of estimated τs. The average τ̂ is about 0.32 while 
the median is 0.33, and the standard deviation is 0.15. For the MV 
approach, we consider the estimated individual-specific gamma esti
mates {γ̂ i}

71
i=1 obtained from expression (9) in the right panel of Fig. 3. 

The average γ̂ is about 4.74 while the median is 4.43, and the standard 
deviation is 3.06. 

The next exercise compares the estimates of individuals’ risk aver
sion across theories. For each individual i, we report in Fig. 4 the pair (γ̂ i,

τ̂ i). These estimates are obtained from minimizing the distance between 
the implied quantiles, for τ̂, and the expected values, for γ̂. The results 
show a negative relationship between the two. This result shows that 
both theories (QP and MV) capture individuals’ underlying risk attitude. 
A high risk aversion given by a large value of γ for the MV model is 
corresponded by a low τ, the parameter that reflects risk aversion under 
the QP model. In general, individuals exhibit a risk-averse behavior with 
just a few individuals characterized by values of τ greater than 0.5 and 
values of γ smaller than one. 

5.2. Discussion of results per individual 

In this subsection, we study the allocation to each lottery per indi
vidual. To do this, we aggregate by task. The left panel of Fig. 5 reports 

the pairs {di,DMi}
71
i=1, which corresponds to the estimates of the pro

portion of tasks that are closer to the QP than to the MV model (di) and 
the DM statistics. 

The overall analysis of the results suggests that the MV utility func
tion is better able to describe individuals’ behavior than the QP 
approach. This is so because most of the observations are above zero in 
the x-axis, reflecting a positive DM statistic, and are below 0.5 in the y- 
axis, reflecting a proportion smaller than 0.5 for the QP theory. The 
graph also reveals the presence of individuals that can be clearly cate
gorized as QP maximizers using one or the other metric. Note also that in 

Fig. 2. The left panel reports the selected portfolio weights by task, and the right panel the selected portfolio weights by individual. The solid and dashed horizontal 
lines are the overall mean and median values, respectively. 
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order to gain a better understanding into individuals’ behavior we need 
to study the individuals’ choices by task. This is done in the next 
subsection. 

5.3. Discussion of results per task 

The right panel of Fig. 5 reports the pairs {dj,DMj}
90
j=1 by task. These 

statistics allow us to classify the tasks as MV and QP driven. The scatter 
plot shows a negative correlation between the statistics dj and DMj, 
across tasks. This negative correlation shows that large values of the 
statistic dj are corresponded by small (or negative) values of the DM 
statistic. The interpretation of this scatter plot is as follows. For a given 
task, a large value of dj implies that the proportion of individuals with 

portfolio allocations closer to the quantile model is higher than with the 
MV theory. This is reflected in the DM statistic, such that if this value is 
smaller than − 1.96, we obtain statistical evidence favoring the model 
driven by QP. In contrast, for low values of dj, the DM statistic usually 
takes positive values such that if the statistic is greater than 1.96, we 
obtain statistical evidence favoring the MV model with respect to the QP 
model. Visual inspection of the graph suggests that there is evidence of 
both types of results across tasks. In contrast to the analysis per indi
vidual, we find a negative DM statistic for many tasks, which suggests 
that the QP model is better able to explain individuals’ choices than the 
MV counterpart. In some cases, these values are also statistically sig
nificant at 5% significance level. 

To obtain further insights into the relationship between the tasks and 
the type of preferences that drive the optimal portfolio choices, we 
explore these choices for each task separately. Table 3 in Section 2 of the 
Online Appendix presents summary statistics on portfolio weights by 
task. These statistics reflect the empirical distribution of weights across 
individuals and illustrate the heterogeneity in individuals’ responses per 
task. We compare the empirical results in this table with the optimal 
allocation to lotteries A and B for each task under the QP and MV the
ories derived above. To illustrate the optimal portfolio choice under 
each theory and for all tasks, Figures 1–90 in Section 3 of the Online 
Appendix report the optimal values of the portfolio weight as the risk 
aversion coefficient (τ or γ) varies in the intervals (0,1) and (0,4), 
respectively. These graphs show the optimal allocation to lottery A as 
the risk aversion coefficient decreases. 

Tasks 1 - 20: 
The specific tasks within this group are found in Appendix A.1. A 

canonical example of this class of experiments is reported in Example 
2.2. This class is characterized by A : U(a, b) vs. B : U(a, d), with b < d. 
Lottery B first order stochastically dominates (FSD) lottery A. 
Figures 1–20 in the Online Appendix show a decrease in the optimal 
allocation to lottery A as the risk aversion coefficient decreases. This 
decrease is more pronounced under QP and depends on the specific 
value of b. Similarly, for high levels of risk aversion, individuals with MV 

Fig. 3. Left panel histogram of the estimated τ for QP preferences by individual. Right panel for the histogram of the estimated γ for MV preferences by individual. 
The solid and dashed vertical lines are the mean and median values, respectively. 

Fig. 4. Scatter plot of (γ̂ i, τ̂ i). The solid and dashed vertical and horizontal lines 
are the mean and median values, respectively. 

Fig. 5. Left panel for the scatter plot for the pairs {di,DMi}
71
i=1, by individual. Right panel for the scatter plot of pairs {dj,DMj}

90
j=1, by task.  
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preferences allocate more wealth to lottery A than QP individuals. The 
latter type allocates a maximum weight of 0.5 to lottery A. These dif
ferences in portfolio allocations are more important for tasks that 
involve lotteries where b is much smaller than d. More formally, the 
theoretical optimal weight allocation under QP preferences is w∗(τ) =
0.5 for values of τ below some threshold τ0 and w∗(τ) = 0, otherwise. 
The specific value of τ0 depends on the choice of the payoff b in lottery A. 

We compare these theoretical allocations with the distribution of 
weights across individuals per task reported in Table 3 in the Online 
Appendix. The empirical weights oscillate between 0 and 0.5 for most 
tasks in this group, with a median between 0.1 and 0.5 and a 90% 
percentile in the range (0.5,0.8). These weights are in line with the 
optimal allocations obtained under both QP and MV theories. For those 
tasks that involve significant differences between the supports of lot
teries A and B (b is much smaller than d) the empirical weights are closer 
to the QP theory than to the MV theory. However, for the other tasks, the 
empirical weights take large values being more in line with the pre
dictions of the MV theory. To provide statistical support to these find
ings, Table 4 in the Online Appendix reports the values of the pairs 

{dj,DMj}
20
j=1 computed using the mean square distance and the quantile 

implied measures developed above. The results confirm the findings 
described above and uncover those tasks for which individuals behave as 
QP maximizers and those tasks for which they behave as MV 
maximizers. 

Tasks 21 - 35: 
The specific tasks within this group are found in Appendix A.2. These 

portfolio experiments are represented by lotteries A : U(a, b) vs. B : U(0,
b), with a > 0 and different values of b. A canonical example is A : U(0.5,
1) vs. B : U(0, 1) in Example 2.3. This family of tasks satisfies that A FSD 
B and the optimal allocation under QP theory depends on the value of a. 
Figures 21–35 in Section 3 of the Online Appendix report the optimal 
allocations to lottery A under QP and MV theories as the risk aversion 
coefficient decreases. For Lotteries A with large a (beyond the mean of 
lottery B), we find that w∗(τ) = 1 for all τ ∈ (0,1), however, if a is small 
then the optimal QP allocation is between 0.5 and 1. Similar results are 
found for the MV theory. In this case, the optimal allocation under MV 
theory converges to w∗ = 1 when a is greater than the average of lottery 
B. Diversification is only present in this group under high levels of risk 
aversion and for tasks where the support of A is large enough (small a). 

The analysis of the distribution of the weights provides interesting 
insights, though. The 10th quantile for these tasks is around 0.50, the 
average oscillates between 0.70 and 0.868, and the median is even 
higher, which suggests that individuals behave according to these the
ories. The DM statistic driven by the squared distance between the 
weights does not yield conclusive evidence and in some cases the DM 
statistic is NA. This is because the two proportions are exactly the same 
and it is not possible to calculate the variance and covariance for the DM 
statistic. In contrast, the statistics based on the implied quantiles provide 
very informative results. The corresponding DM statistic is negative and 
statistically significant giving support to the QP theory compared to the 
MV theory. Individuals when confronted with these tasks seem to follow 
the first order stochastic dominance rule and diversify less than under 
the MV theory. 

Tasks 36 - 55: 
The specific tasks within this group are found in Appendix A.3. These 

portfolio experiments are represented by overlapping lotteries such that 
A : U(a, b) vs. B : U(c,d), with a > c and b > d. A canonical example is A :

U(0.25, 1.25) vs. B : U(0,1) in Example 2.4. This family of tasks satisfies 
that A FSD B and the optimal allocation under QP theory is w∗ ∈ (0, 1)
for τ ≤ τ0 and w∗ = 1, otherwise. In contrast, the optimal allocation 
under MV theory starts at w∗ = 0.5 for all tasks for high levels of risk 
aversion and increases towards one as the risk aversion coefficient de
creases. These allocations are reported in Figures 36–55 of the Online 
Appendix. 

In contrast to the preceding example, the analysis of the theoretical 

weights in expression (6) and visual inspection of Figures 36–55, allow 
us to clearly discriminate between MV and QP. Thus, the empirical 
distribution of weights in Table 3 (Online Appendix) provides results 
that align very well with the theoretical predictions of both QP and MV 
theories. More specifically, the 10th quantile for these tasks is around 
0.50 in most cases, the average oscillates between 0.70 and 0.878, and 
the median is usually higher than the mean. A closer look to the sum
mary statistics suggests, however, that these values are only consistent 
with the MV case for γ < 1, otherwise, the MV theory predicts more 
diversification than what we observe in individuals’ choices. The dis
tribution of the empirical weights seems to be more in line with the 
optimal portfolio allocation obtained under the QP theory. On the other 
hand, whereas the QP theory predicts full allocation to lottery A, the 
empirical weights show some non-negligible allocation to lottery B too. 
These empirical findings are inconclusive so the inspection of the sta

tistics {dj,DMj}
55
j=36 in Table 4 (Online Appendix) may be useful in this 

case to discriminate between theories. The dj statistic yields values 
greater than 0.5 for several tasks but values close to zero for many other 
tasks in this group. In general, the DM statistic under both estimation 
methods is very positive providing statistical support to the MV case. 
The overall analysis of the empirical results for this group suggests that 
the observed weights are closer to the predictions of the MV model for 
individuals with low levels of risk aversion. 

Tasks 56 - 69: 
The specific tasks within this group are found in Appendix A.4 and 

the optimal allocations are reported in Figures 56–69 of the Online 
Appendix. These portfolio experiments are represented by lotteries such 
as A : U(a, b) vs. B : U(c, d), with a > c and b < d. The support of A is 
strictly included in the support of B, implying that the variance of the 
latter lottery is larger than the former. A canonical example is A :

U(0.25, 0.75) vs. B : U(0, 1) in Example 2.5. The optimal portfolio allo
cation is an interior solution for τ ≤ τ0 and w∗ = 0, otherwise. In 
contrast, the optimal allocation to lottery A under the MV theory os
cillates between 0.5 and 1. It approaches w∗ = 1 as the variance of lot
tery A compared to lottery B decreases (the support of A decreases with 
respect to the support of B). For many of the tasks in this class (those 
with same mean) this scenario corresponds to A that stochastically 
dominates lottery B in second order. 

The analysis of the distribution of the weights in Table 3 (Online 
Appendix) provides interesting findings that align very well with both 
theories. The empirical distribution of weights seems to be in the range 
(0.5,1) and the median is also quite high. It is difficult to discriminate 
between both theories using the empirical weight distribution. Howev

er, inspection of the statistics {dj,DMj}
69
j=56 in Table 4 (Online Appendix) 

sheds further light on the empirical results. This table provides strong 
statistical support on the superiority of the QP theory compared to MV 
for this class of tasks. The dj statistic yields values greater than 0.5 for 
several tasks, which indicates that there is a larger proportion of in
dividuals that can be classified as QP maximizers compared to MV 
maximizers. Similarly, the DMj statistic is negative in many cases and 
provides statistically significant results. 

Tasks 70 - 90: 
Tasks in this experiment include a risk-free asset. The specific tasks 

within this group are found in Appendix A.5 and the optimal allocations 
are reported in Figures 70-–90 of the Online Appendix. Both theories 
predict similar optimal portfolio allocations. The MV allocation is 
smoother than the QP allocation, nevertheless, both allocations predict 
full investment on the risk-free asset for high levels of risk aversion. As 
the level of risk aversion decreases, the QP theory predicts a complete 
shift to the risky asset. In contrast, the MV theory predicts some diver
sification. This is only the case if the payoff of the risk-free asset is lower 
than the mean of the risky asset, otherwise, the optimal allocation is full 
investment on the risk-free asset independently of the risk aversion 
coefficient. 
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The distribution of weights in Table 3 (Online Appendix) exhibits 
some heterogeneity across individuals for some tasks. For example, for 
Task 70 given by A : 2 vs. B : U[0, 20], we find that most individuals 
allocate a weight to the risk-free asset in the range (0,0.25), which is 
more in line with the QP theory than with the MV theory. For the latter 
theory to be consistent with the observed empirical distribution of 
weights, γ needs to be smaller than 1/3, which corresponds to very low 
levels of risk aversion. Similar findings are obtained for the analysis of 
Task 71. However, as the payoff of the risk-free asset increases, we 
observe a positive shift of the empirical distribution of weights. In these 
cases, the MV predictions are better able to explain individuals’ choices 
than the QP predictions. This is mainly due to the additional flexibility of 
the MV case that accommodates some diversification for moderate 
values of the risk aversion coefficient, in contrast to the QP case. Finally, 
for those cases when the payoff of the risk-free asset is high both theories 
yield the same optimal portfolios given by full allocation into the risk- 
free asset. 

The comparison of the theories using the statistics {dj,DMj}
90
j=71 in 

Table 4 (Online Appendix) also presents mixed results. There are, 
however, more tasks that are better represented by the MV theory than 
by the QP theory. 

6. Conclusion 

This paper has studied optimal portfolio allocation under quantile 
preferences using a laboratory experiment with 71 undergraduate and 
graduate students from University of Arizona. The experiment simulates 
a simple portfolio decision exercise and is formed of 90 tasks. Each task 

has two assets, either two risky assets or one risk-free and one risky asset, 
with the risky assets following a Uniform distribution function. We have 
used this experiment to assess the insights of the quantile preference 
model with real data. We have studied the suitability of the predictions 
of the MV and QP theories to explain the data on portfolio weights 
collected from the experiment. The results of the experiment confirm 
that both theories help to predict individuals’ optimal choices. Subjects 
in the experiment are clearly risk averse under both specifications of 
individuals’ preferences. The aggregation of results by individual offers 
partial support to the MV theory whereas the aggregation of results by 
task is more supportive of the QP theory. 

The overall message that emerges from this analysis is that in
dividuals’ behavior is better predicted by the MV model when it is 
difficult to assess the differences in the payoff distribution of the lotteries 
comprising the portfolio. Individuals behave as QP maximizers, other
wise. This result suggests that diversification may act sometimes as a 
decision mechanism that individuals use when it is not clear how to 
assess the relative gains/losses of one strategy over the other as, for 
example, when the lotteries’ payoff distributions overlap. In these cases, 
MV preferences seem a safer choice as the optimal outcome of these 
policies usually yield to diversification. This outcome involves fewer 
exposures to single assets than the QP theory even if the latter might lead 
to superior monetary rewards. In contrast, when individuals are able to 
clearly assess the differences in the distribution of payoffs between 
lotteries their portfolio choices are closer to the optimal decision of a QP 
maximizer than of a MV maximizer. In these (simpler) cases, individuals 
are able to maximize over the distribution of the portfolio rather than 
trading expected return for variance.  

Appendix A. Tasks for experiment 

Here we show the optimal portfolio MV allocations and the optimal portfolio QP allocations from all of the tasks. These 90 tasks are divided in five 
categories from A.1 to A.5. Each category considers a different type of relationship between two Uniform distributions, each corresponding to a 
different lottery A and B. 

The section also presents figures with the optimal portfolio allocation w∗, that corresponds to lottery A. Left panels plot the optimal allocation 
under the MV framework and the right panel plot the optimal allocation under the QP framework. The x-axis captures risk aversion. For the MV case, 
we report w∗ as a function of 1/γ, and for the QP case, we report w∗ as a function of τ. 

A1. Experiments replicating example 2.2: 

In these examples, B first order stochastically dominates A. Note that the options in this experiment, described as lotteries, are reversed compared 
to the example.  

[1] A : U[0,2] B : U[0,20] [2] A : U[0,4] B : U[0,20] [3] A : U[0,6] B : U[0,20]
[4] A : U[0,8] B : U[0,20] [5] A : U[0,10] B : U[0,20] [6] A : U[0,12] B : U[0,20]
[7] A : U[0,14] B : U[0,20] [8] A : U[0,16] B : U[0,20] [9] A : U[0,18] B : U[0,20]
[10] A : U[0,20] B : U[0,20] [11] A : U[4, 10] B : U[4,20] [12] A : U[4, 12] B : U[4,20]
[13] A : U[4,14] B : U[4,20] [14] A : U[4,16] B : U[4,20] [15] A : U[4,18] B : U[4,20]
[16] A : U[10,16] B : U[10,25] [17] A : U[10,18] B : U[10,25] [18] A : U[10,20] B : U[10,25]
[19] A : U[10,22] B : U[10,25] [20] A : U[10,24] B : U[10,25]

A2. Experiments replicating example 2.3: 

In these examples, lottery A first order stochastically dominates lottery B. Note that there are different lower ends of the distributions.  
[21] A : U[2, 20] B : U[0,20] [22] A : U[4,20] B : U[0,20] [23] A : U[8,20] B : U[0,20]
[24] A : U[12,20] B : U[0,20] [25] A : U[16,20] B : U[0,20] [26] A : U[4,25] B : U[0,25].  
[27] A : U[8,25] B : U[0,25] [28] A : U[12,25] B : U[0,25] [29] A : U[16,25] B : U[0,25]
[30] A : U[20,25] B : U[0,25] [31] A : U[2,10] B : U[0,10] [32] A : U[4,10] B : U[0,10]
[33] A : U[6,10] B : U[0,10] [34] A : U[8,10] B : U[0,10] [35] A : U[10,15] B : U[0,15]

A3. Experiments replicating example 2.4 

In these examples, lottery A stochastically dominates lottery B. The support of the random variables overlaps. 
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[36] A : U[2, 22] B : U[0,20] [37] A : U[4, 24] B : U[0,20] [38] A : U[6,26] B : U[0,20]
[39] A : U[8,28] B : U[0,20] [40] A : U[10,30] B : U[0,20] [41] A : U[12,32] B : U[0,20]
[42] A : U[14,34] B : U[0,20] [43] A : U[16,36] B : U[0,20] [44] A : U[18,38] B : U[0,20]
[45] A : U[16,26] B : U[10,20] [46] A : U[2, 12] B : U[0,10] [47] A : U[14, 30] B : U[0,16]
[48] A : U[12,28] B : U[0,16] [49] A : U[10,26] B : U[0,16] [50] A : U[8,24] B : U[0,16]
[51] A : U[6,22] B : U[0,16] [52] A : U[4, 20] B : U[0,16] [53] A : U[2, 18] B : U[0,16]
[54] A : U[2,16] B : U[0,14] [55] A : U[4,18] B : U[0,14].    

A4. Experiments replicating example 2.5 

In these examples, there is no stochastic dominance on either side.  
[56] A : U[2, 18] B : U[0,20] [57] A : U[4,16] B : U[0,20] [58] A : U[6,14] B : U[0,20]
[59] A : U[8,12] B : U[0,20] [60] A : U[6,22] B : U[4,24] [61] A : U[8,22] B : U[4,24]
[62] A : U[6,20] B : U[4,24] [63] A : U[8,20] B : U[4,24] [64] A : U[12,18] B : U[10,20]
[65] A : U[14,18] B : U[10,20] [66] A : U[16, 18] B : U[10,20] [67] A : U[14, 16] B : U[12,20]
[68] A : U[13,17] B : U[12,18] [69] A : U[14,16] B : U[12,18]

A5. Example with risk-free asset: 

In these examples, there is no stochastic dominance on either side. Lottery A corresponds to a risk-free asset with fixed payoff.  
[70] A : 2 B : U[0,20] [71] A : 4 B : U[0,20] [72] A : 6 B : U[0,20]
[73] A : 8 B : U[0,20] [74] A : 10 B : U[0,20] [75] A : 12 B : U[0,20]
[76] A : 14 B : U[0,20] [77] A : 16 B : U[0,20] [78] A : 18 B : U[0,20]
[79] A : 20 B : U[0,20] [80] A : 12 B : U[8,16] [81]A : 9 B : U[8,20]
[82] A : 8 B : U[4,24] [83] A : 10 B : U[8,12] [84] A : 6 B : U[2,10]
[85] A : 14 B : U[4,24] [86] A : 16 B : U[4,24] [87] A : 18 B : U[4,24]
[88] A : 20 B : U[4,24] [89] A : 22 B : U[4,24] [90]A : 24 B : U[4,24]

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.socec.2021.101822 
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