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Abstract

We prove the existence of monotonic pure strategy equilibrium for many kinds of asymmetric auctions
with n bidders and unitary demands, interdependent values and independent types. The assumptions require
monotonicity only in the own bidder’s type. The payments can be a function of all bids. Thus, we provide
a new equilibrium existence result for asymmetrical double auctions and a small number of bidders. The
generality of our setting requires the use of special tie-breaking rules. We present an example of a double
auction with interdependent values where all equilibria are trivial, that is, they have zero probability of
trade. This is related to Akerlof’s “market for lemmons” example and to the “winner’s curse,” establishing a
connection between them. However, we are able to provide sufficient conditions for non-trivial equilibrium
existence.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Since the first works considering asymmetrical auctions, by Vickrey (1961) and Griesmer
et al. (1967), many theoretical papers have addressed the question of the equilibrium existence
for such games, among which we can cite Amann and Leininger (1996), Lebrun (1999), Lizzeri
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and Persico (2000), Maskin and Riley (2000), Athey (2001), Reny and Zamir (2004) and Jackson
and Swinkels (2005).1 The methods to prove the existence of equilibrium are essentially of two
kinds. The first papers appeal to a system of differential equations whose solution is shown to be
an equilibrium. The later ones discretize the space of types or bids, obtain the equilibrium in this
case and then prove that the limit when the grid is made fine is an equilibrium.2

In this paper, we take another route to prove the equilibrium existence for monotonic asym-
metrical auctions with independent types. We allow assumptions weaker than the usual: we do
not assume that the utilities are increasing in all types but only in the own bidder’s type, and pay-
ment can depend on all bids. Thus, we treat in a single framework many kinds of asymmetrical
auctions with unitary demand, including double auctions.

We work on the set of non-decreasing functions, N , and of smooth increasing functions, I . We
prove that the set of best responses to functions in I is a “unitary” subset of N .3 Thus, convexity
of the set of best replies is straightforward. We make a perturbation of the original auction to
avoid the problem of discontinuities. Since N is compact in the L1 topology, we can use the
Kakutani–Fan–Glicksberg Theorem to obtain easily a fixed point for each perturbed auction.
The limit of these fixed points is shown to be an equilibrium of the original auction under an
appropriate tie-breaking rule.4

We prove equilibrium existence with an endogenous tie-breaking rule à la Simon and Zame
(1990) and Jackson et al. (2002). As discussed in Section 3.1, the need of a special tie-breaking
rule is unavoidable in our setting.

This is the first equilibrium existence result for asymmetric double auctions with interdepen-
dent values and a small number of players (see Section 5 for a discussion on the literature).
Thus, we are also interested in establishing that the equilibrium is not trivial, that is, there is
a positive probability of trade. This was established for private value auctions by Jackson and
Swinkels (2005) under quite general conditions. Nevertheless, since they are restricted to private
values, their proof does not directly apply. Moreover, for interdependent value auctions, we give
an example where all equilibria are without trade, even with a positive probability of buyers’ val-
ues being above sellers’ values (see Example 3). This is related to Akerlof’s (1970) “market for
lemons” example on the effects of private information and to the “winner’s curse,” establishing
a connection between them. Thus, additional assumptions are needed for the existence of a non-
trivial equilibrium. We formalize such assumptions and prove the existence of an equilibrium
with positive probability of trade.

The connection between Akerlof’s market for lemons and the problem of nontrade in auctions
with interdependent values should not be surprising. Indeed, auctions provide a good setup for
analyzing general equilibrium models with asymmetric information. More than that, as Milgrom
(1981) argues, auction theory is useful to explain or solve some paradox of general equilibrium
theory, such as that related to rational expectations. Although Milgrom (1981) is able to provide
explanations of such paradoxes, his model is restricted to second price auctions. Since double
auctions offer a more realistic model of actual markets, one can view our results as a contribution

1 While Vickrey (1961), Athey (2001) and Jackson and Swinkels (2005) consider many kinds of games and Amann
and Leininger (1996) treat all-pay auctions, the rest of these papers are mainly concerned with first-price auctions, as are
Griesmer et al. (1967). Vickrey (1961) analyzes mainly symmetric auctions.

2 Jackson and Swinkels (2005) can be considered an exception, because they appeal to more general theorems about
the existence of Nash equilibrium.

3 This needs a qualification. See Remark 1.
4 Our method is related to Fudenberg et al. (2007). See Section 5 for a discussion.



A. Araujo, L.I. de Castro / Games and Economic Behavior 65 (2009) 25–48 27
to Milgrom’s program of establishing strategic foundation for rational expectations equilibrium
through auction theory.5

The paper is organized as follows. In Section 2 we describe the model. In Section 3 we present
our equilibrium existence result and a useful auxiliary result. In Section 4 we give sufficient
conditions for double auctions having a non-trivial equilibrium, that is, an equilibrium with a
positive probability of trade. The conclusion (Section 5) is a discussion about the contributions
of this paper and the related literature. Appendix A collects the proofs.

2. The model

Let P = {1, . . . , n} be the set of players. Players are sellers, each possessing one object, or
buyers, who are interested in buying just one object. If all strategic players are buyers (or sellers),
we say that the auction is single-sided. It is convenient to say that P = S ∪B , where players j ∈ S

are sellers and players i ∈ B are buyers.
Some of these players can be non-strategic, in which case the utility functions defined below

do not exist. To assume the existence of non-strategic players is useful to prove the existence of
trade in double auctions, but it is sometimes also useful in single-sided auctions. For instance,
exogenously fixed but secret reserve prices can be modeled as bids of non-strategic sellers.6

In fact, we can say that the only difference between double and single-sided auctions is that
sellers (or buyers) are non-strategic in the later case. Although non-strategic players do not have
a relevant payoff function, they will be treated exactly as strategic players (with signals and
covert bids), but with an exogenously fixed strategy. This does not introduce any problem and
makes the statements easier.

Player i ∈ {1, . . . , n} receives a unidimensional private information, ti , and submits a sealed
bid bi ∈ R+. The auctioneer compares the bids and determines who receives one object and who
does not, according to an allocation rule specified below.

If player i receives one object, her payoff is ui(t, b) and if she receives no object, her payoff
is ui(t, b), where t = (ti , t−i ) is the profile of all signals and b = (bi, b−i ) is the profile of bids.
The dependence on all bids and the asymmetry of the functions allow modeling double auctions
and exotic single-sided auctions, where the payment is a function of more than one bid.

2.1. Information

We assume independence of types. Because ui(t, b) and ui(t, b) can have any form, we may
assume without loss of generality that the private signal of each player, ti , is a real number
uniformly distributed in [0,1].7 To summarize, we require the following:

Assumption 1. Types are independent and uniformly distributed on [0,1].

5 Reny and Perry (2006) is another contribution to this program.
6 Obviously, secret strategic reserve prices can also be modeled as bids of strategic sellers.
7 Assume that the original type is hi , distributed on [hi ,hi ] according to the strictly increasing and continuous c.d.f.

Fi(·) and that the value of the object is given by vi(hi , h−i ). Then, we can define ti = Fi(hi ) and ui(ti , t−i ) ≡
vi (F

−1
i

(ti ),F
−1
−i

(t−i )). Now, the type ti is uniformly distributed on [0,1]. Thus, our assumption rules out just the
cases of atoms or gaps in the distribution of types.
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The main role of Assumption 1 is to obtain the existence of a monotonic best reply, when the
opponents follow strictly increasing strategies, which is the theme of our first result (Theorem 1
below). This states the existence and (a qualified) uniqueness of the best reply. Although we use
independence to simplify arguments in general, it seems possible to modify all other proofs to
accommodate dependence (in the case where there exists a strictly positive density function on
[0,1]n), provided we have the consequences pointed by Theorem 1. Unfortunately, even under
affiliation, the conclusion of Theorem 1 is not always true (see Reny and Zamir, 2004 for a
counter-example). Because of this, we maintain such an assumption throughout the paper.8

2.2. Bidding

After receiving the private information, each player submits a sealed bid bi ∈ R. There is
a reserve price b � 0 and a maximum valid bid b, which are commonly known.9 In addition,
buyers can take a non-participation decision, bB

OUT < b, which ensures them the payoff of zero.
In the same way, sellers can take a non-participation decision bS

OUT > b. Thus, the action space is
{bB

OUT} ∪ [b, b] for buyers and [b, b] ∪ {bS
OUT} for sellers. For simplicity, we will make an abuse

of notation by defining

B ≡ {
bB

OUT

} ∪ [
b, b

] ∪ {
bS

OUT

}
as the action space. As said earlier, b stands for the profiles of bids, that is, b = (b1, b2, . . . , bn) ∈
Bn. As usual, we will use the notation b−i = (b1, . . . , bi−1, bi+1, . . . , bn) and write b = (bi, b−i ).

2.3. Allocation

The allocation of the objects is done according to an allocation rule (or function) a : Bn →
[0,1]n, with the following meaning. Given a profile of bids b ∈ Bn, if ai(b) = 1 then player i

receives one object at the end of the auction, that is, if i is a buyer, she buys one object, whereas
if i is a seller, she keeps her object. We allow ai(b) to take values between 0 and 1. This allows us
to model the standard tie-breaking rule, which consists in splitting the object evenly (randomly)
among the tying bidders.

Jackson et al. (2002) point out that some auctions do not have equilibrium with the standard
tie-breaking rule (see their Example 1 and also Jackson et al., 2004). Thus, some special tie-
breaking rules are required for a general equilibrium existence result and they may require that
the bidders take further actions in the case of a tie. For instance, Maskin and Riley (2000) use
a second price auction tie-breaking rule, which requires the bidders involved in a tie to bid in a
second-price auction. Jackson et al. (2002) propose that the action is the announcement of their
types. To model this, we will assume that the allocation rule is actually defined as a function
a : Bn × S n → [0,1]n, where S is a set of actions used to break ties. We will omit S when no
action is required. Thus, we have the following:

8 The consequences of Theorem 1 can also be obtained by assuming a large number of players, even when types are
dependent. See Fudenberg et al. (2007).

9 If there is no reserve price (in the usual sense), let b = 0. We are assuming a maximum permitted bid to rule out
equilibria in which one bidder bids arbitrarily high and the others bid zero. This could happen in third price auctions, for
instance.
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Definition 1. Let no be the number of objects in the auction.10 A function a : Bn × S n → [0,1]n
is an allocation rule if:

(i) t �→ a(b(t), s(t)) is measurable for all profiles of measurable strategies (b, s).11

(ii) For all (b, s) ∈ Bn × S n,
∑

i∈P ai(b, s) = no.
(iii) For each i ∈ P , ai(b, s) is non-decreasing in bi and non-increasing in bj , for j �= i.
(iv) For each i ∈ P , ai(b, s) does not depend on s, unless �{j : bj > bi} < no and �{j : bj <

bi} < n − no, that is, unless there is a relevant tie at bi .12

(v) For each i ∈ P , ai(b
B
OUT , b−i , s) = 0 and ai(b

S
OUT , b−i , s) = 1 for all b−i and s.13

Condition (i) is just a technical condition, while condition (ii) establishes that all the objects
are received by some bidder (including, possibly, the non-strategic ones). Condition (iii) estab-
lishes that a bid increasing does not diminish the possibility of winning (and may increase it).
Condition (iv) is the restriction that the actions s are important only in cases of ties. Condition (v)
is just the formalization of the definition of bB

OUT and bS
OUT .

The reader should note that the definition does not require that the bidder with the highest bid
receives the object, as occurs in fair auctions. This freedom in the definition will be useful in the
statement of our results, but we are interested in fair allocation rules, where each player receives
the object if her bid is above n − no bids. Indeed, consider the following:

Definition 2. Let no be as above. A function a : Bn × S n → [0,1]n is a fair allocation rule (or a
tie-breaking rule) if it satisfies the properties (i)–(v) above and, additionally:

(vi) ai(b, s) = 1 if �{j : bj < bi} � n − no.
(vii) ai(b, s) = 0 if �{j : bj > bi} � no.

A fair allocation rule defines a threshold bid, TB(b−i ), for each player and profile of the
opponents’ bids, b−i , which is just the no-order statistics of the opponents’ bids. That is, for each
player i ∈ P and each profile b−i ∈ Bn−1, there is TB(b−i ) ∈ {b1, . . . , bi−1, bi+1, . . . , bn} ⊂ B
such that ai(b, s) = 1 if bi > TB(b−i ) and ai(b, s) = 0 if bi < TB(b−i ). The value of ai(b, s) is
unspecified only if bi = TB(b−i ). Condition (iii) implies that TB : Bn−1 → B is a non-decreasing
function. Thus, conditions (vi) and (vii) above could also be written as:

(vi) ai(b, s) = 1 if bi > TB(b−i ).
(vii) ai(b, s) = 0 if bi < TB(b−i ).

10 Formally, the number of objects in the auction no is equal to the number of strategic and non-strategic sellers, nS .
We introduce the notation no only to avoid confusion in the case of single-sided auctions (of buyers), where there are no
sellers (besides the non-strategic ones).
11 We will always work with allocation rules that are monotonic in all arguments. Thus, measurability will not be an
issue.
12 A tie is relevant only if it brings doubt as to who gets the object. For instance, a tie between the two highest bids is
not relevant in an auction with three objects.
13 Although bB

OUT is available only for buyers and bS
OUT is available only for sellers, it is convenient to define ai for all

bi ∈ B.
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The reader should note that the payments are specified in the utility functions ui , ui . Thus, we
define an auction as a profile A = Aa = (P, {ui, ui}i∈P ,no, B, S, a). Now, observe that if we let
a vary in the set of fair allocation rules, the outcome of the auction is completely defined, except
in situations where there are relevant ties. Thus, it is useful to have the following:

Definition 3. An auction with unspecified allocation rule is a profile A = (P, {ui, ui}i∈P ,no, B).
A specification of A is a profile Aa = (P, {ui, ui}i∈P ,no, B, S, a), where a is an allocation rule.
If we restrict the specification of A to the set of fair allocation rules, we may say that A is a fair
auction with unspecified tie-breaking rule.

Definition 4. The standard allocation rule or the standard tie-breaking rule, denoted by ā, is a
fair allocation rule where S = {∅} and the ties are broken by giving the object with the same
probability to all tying bidders. A fair allocation rule (tie-breaking rule) is said to be special if it
is not the standard one.

2.4. Assumptions on the payoff functions

Before the formal statement, given below, we summarize our assumptions on the payoff func-
tions ui and ui : they are required to be continuous (Assumption 2); the net benefit ui ≡ ui −ui

is increasing with the own player’s type, but not necessarily in the other players’ types (As-
sumption 3); the utilities are supermodular (Assumption 4) and weakly monotonic on the bids
(Assumption 5). Obviously, the assumptions on payoff functions refer only to strategic players,
since non-strategic players do not have such functions. Thus, when we use P below, it must be
understood as the set of strategy players only.

We formalize and discuss each of these assumptions in the sequel:

Assumption 2. For all i ∈ P , ui(t, b) and ui(t, b) are absolutely continuous in t ∈ [0,1]n and
b ∈ Bn.

It is standard in auction theory to assume continuity or differentiability of the utility functions.
Assumption 2 weakens differentiability, but rules out continuous functions with singular parts,
that is, functions whose image of zero measure sets may have positive measure.14

Assumption 3. For all i ∈ P , ui(t, b) ≡ ui(t, b) − ui(t, b) is strictly increasing in ti .

This is a monotonicity condition weaker than what is usually required. In interdependent value
auctions, it is almost always assumed that the functions are increasing in the own bidder’s type
and non-decreasing in the other types. In contrast, Assumption 3 allows the utility function to
be decreasing in the opponents’ types. For instance, the example 1 of Jackson et al. (2002) is
included in our framework, where ui(b, t) = 5 + ti − 4t−i − bi and ui(b, t) = 0. We will return
to this example later on, when we discuss the need of the tie-breaking rule (see Example 2 in
Section 3.1).

14 Absolute continuity implies the existence of derivatives almost everywhere and that the function is equal to the
integral of its derivative.
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Assumption 4. For all i ∈ P , ∂bi
ui(t, b) and ∂bi

ui(t, b) are non-decreasing in ti (where these
derivatives exist).

This assumption is only the requirement that ui and ui be supermodular as functions of
(ti , bi). Indeed, a function f (a, x) is supermodular if a′ � a, x′ � x imply f (a′, x′)−f (a, x′) �
f (a′, x) − f (a, x). In the case of f being twice differentiable, this is equivalent to ∂2

12f � 0.
To see that this assumption is not restrictive in auctions, assume that we have differentia-

bility and consider the second price auctions. In this case, ui(t, b) = Ui(vi(t) − maxj �=i bi) and
ui(t, b) = 0. Thus, ∂2

bi ti
ui = ∂2

bi ti
ui = 0. For the first price auction, ui(t

′
i , t−i , b) = Ui(vi(t)−bi),

then ∂2
bi ti

ui = U ′′
i · (−1) · ∂ti vi . If ∂ti vi � 0, as usual, then ∂2

bi ti
ui � 0 ⇔ U ′′

i � 0, i.e., in this set-
ting, super modularity is equivalent to weak risk aversion. We illustrate below that it is also not
restrictive for double auctions (see Lemma 1). Supermodularity is an assumption usually required
to prove existence of pure strategy equilibria in auctions (see, for instance, Lizzeri and Persico,
2000; Maskin and Riley, 2000; Athey, 2001, etc.) In this sense, Assumption 4 is a standard one.

Assumptions 1–4 are used in the proof of Theorem 1, which shows, under an additional con-
dition, that if a bid is a best reply for a fixed type, no bid below it will be optimal for a higher
type, that is, all best replies are non-decreasing (see Remark 1 for a more precise statement). Our
equilibrium existence result (Theorem 2) is also valid under Assumptions 1–4. Nevertheless, we
consider an additional assumption:

Assumption 5. ui and ui are both non-decreasing or both non-increasing in bi for all i ∈ P .

This assumption is satisfied by all standard auctions considered in the literature, as we show
below. Assumption 5 is used only in the proof of Lemma 3 below, which is valid without it (see
footnote 18). We introduce such an assumption to show that it is possible to obtain convexity of
the values of the best-reply correspondence in auctions without appealing to Athey’s (2001) way
of writing the best-reply correspondence.15

2.5. Examples

This setting applies to a broad class of discontinuous games (not only auctions). For instance,
ui(t, b) = vi(t)−bi and ui(t, b) = 0 correspond to a first price auction with risk neutrality. In this
case, ui is decreasing in bi and ui is constant with it, which implies Assumption 5. If ui(t, b) =
vi(t)−bi and ui(t, b) = −bi we have the all-pay auction and both ui and ui are decreasing in bi ,
also satisfying Assumption 5. The same is true if ui(t, b) = vi(t)−maxj �=i bj and ui(t, b) = −bi ,
which is called the war of attrition. As pointed out by Lizzeri and Persico (2000), we can also
have combinations of these games. For example, ui(t, b) = vi(t) − αbi − (1 − α)maxj �=i bj and
ui(t, b) = 0, with α ∈ (0,1), gives a combination of first and second price auctions. Another
possibility is the “third price auction” or an auction where the payment is a general function of
the others’ bids.

The assumptions are also natural to double auctions. Indeed, consider the following specifi-
cation, which we use in Theorem 3, on the existence of trade with positive probability:

15 Athey (2001) consider monotonic strategies with values in a finite actions set. These strategies can be characterized
by its jumping points (see her Definition 4). Using this way of writing strategies, Athey modifies the best-reply correspon-
dence to obtain convexity of its values (her Lemma 2). Our proof of Lemma 3 shows that this method is not necessary if
Assumption 5 and (the consequences of) Theorem 1 hold.
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Assumption 6 (Double auction). Let ui(t, b) and ui(t, b) be defined as follows:

ui(t, b) =
{

Ui(vi(t) − ei), if i ∈ S,

Ui(vi(t) − pi(b) − ei), if i ∈ B

and

ui(t, b) =
{

Ui(pi(b) − ei), if i ∈ S,

Ui(−ei), if i ∈ B

where ei � 0 is a participation fee, which is zero if bi ∈ {bB
OUT , bS

OUT} and pi(b) � 0 is the price
paid (received) by buyer i ∈ B (seller i ∈ S). Moreover:

(i) Ui and vi are strictly increasing and differentiable for all i, with Ui(0) = 0;
(ii) Ui is concave for all i ∈ B;

(iii) pi(b) is differentiable and non-decreasing in bi ;
(iv) vi is strictly increasing in ti for all i.

We have the following:

Lemma 1. Assumption 6 implies Assumptions 2–5.

Proof. It is immediate to check Assumptions 2 and 3. For sellers, Assumption 4 holds triv-
ially because ∂bi

ui and ∂bi
ui do not depend on ti . For buyers, ∂bi

ui also do not depend
on ti . Now, ti � t ′i implies vi(ti , t−i ) − p(b) � vi(t

′
i , t−i ) − p(b) by (i), which in turn implies

−U ′
i (vi(ti , t−i ) − p(b) − ei) � −U ′

i (vi(ti , t−i ) − p(b) − ei) because of (ii). Now, (iii) implies
that ∂bi

p(b) � 0 and Assumption 4 follows from ∂bi
ui(b, t) = −U ′

i (vi(t) − p(b)) · ∂bi
p(b). Fi-

nally, (iii) implies that Assumption 5 is also satisfied. �
Our model is not restricted to auctions. Indeed, some industrial organization games fit very

well our framework. For instance, in a Bertrand pricing game, the firm’s payoff is given by
(pi − ci(t))D(p) if its price pi is below the price of the others and zero otherwise. Here, D(·)
stands for the demand and ci is the cost of firm i. Thus, we put ui(t,p) = 0 and ui(t,p) =
(pi − ci(t))D(p). Assumptions 2–5 are satisfied if ci and D(·) are absolutely continuous, ci

is decreasing with the type ti and D is non-increasing in pi , which are natural assumptions to
require.

2.6. Notation

Let Ñ be the set of non-decreasing functions from [0,1] to B. For a function g ∈ Ñ , let [g] be
the equivalence class of the functions that differ of g only in a set of zero measure. Now, define N

as {[g]: g ∈ Ñ}. The equivalence classes will be referred to as functions, in the usual abuse of
terminology. We endow N with the norm topology of L1([0,1],R). It is easy to see that N is
compact and convex.16

16 One way to see compactness is to remember Helly’s Theorem, which says that a sequence of non-decreasing functions
has a subsequence that converges pointwise to a nondecreasing function for all the continuity points of the limit function.
The pointwise convergence implies the convergence in L1. Thus, the representative function in each equivalence class
bm ∈ N has a convergent subsequence that converges to bi ∈ N . Another way to see this is to prove that N is totally

i
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In order to avoid confusion with the bids, we will use bold letters to denote bidding
functions, i.e., b = (b1, . . . ,bn) ∈ Nn. If we fix the strategies of i’s opponents, b−i =
(b1, . . . ,bi−1,bi+1, . . . ,bn) ∈ Nn−1, let

Fb−i
(β) ≡ Pr

({
t−i : ai

(
β,b−i (t−i )

)
> 0

})
.

Note that Fb−i
is a c.d.f. by the properties of ai required by Definition 1.

If Fb−i
(·) is absolutely continuous with respect to the Lebesgue measure, let fb−i

(·) be
its Radon–Nykodim derivative. Let us define b∗ ≡ ess inf{β ∈ [b, b]: fb−i

(β) > 0} and b∗ ≡
ess sup{β ∈ [b, b]: fb−i

(β) > 0}. Note that b∗ and b∗ vary with b−i , but we will omit such de-
pendence. Obviously, the support of Fb−i

(·) is contained in [b∗, b∗].
Let I ⊂ N be the set of smooth strictly increasing functions bi : [0,1] → R. Observe that if

b−i ∈ In−1, then the distribution Fb−i
(β) is absolutely continuous with respect to the Lebesgue

measure (in particular, there is no relevant tie with positive probability).
If the allocation rule is fixed and so is the profile b−i , the (interim) expected payoff of bidder i

of type ti , when bidding bi ∈ [b, b] is:

Πi(ti , bi,b−i ) ≡
∫ [

ui

(
t, bi,b−i (t−i )

)
ai + ui

(
t, bi,b−i (t−i )

)
(1 − ai)

]
dt−i ,

where we omitted the arguments of ai to simplify notation. Assume that Πi(ti , bi,b−i ) = 0 if
bi ∈ {bB

OUT , bS
OUT}.

When b−i is clear, we will write Πi(ti , bi) for Πi(ti , bi,b−i ) and omit the arguments and the
measure (dt−i ).

Observe also that if b−i does not involve ties with positive probability, then all fair allocation
rules produce the same payoff. In this case, the function Πi(ti , bi,b−i ) is well defined for a fair
auction with unspecified tie-breaking rule (see Definition 3).

Let ui ≡ ui − ui be the net ex post payoff and let

Vi(bi ,b−i ) =
∫

Πi

(
ti ,bi (ti),b−i

)
dti

be the ex ante payoff.
Finally, we define the interim and the ex ante best-reply correspondence, respectively, by

Θi(ti ,b−i ) ≡ arg max
β∈B

Πi(ti , β,b−i ),

and

Γi(b−i ) ≡ arg max
bi∈L1([0,1],B)

Vi(bi ,b−i ).

3. Existence of pure strategy equilibrium

Our first result is related to Proposition 1 of Maskin and Riley (2000). This proposition says
that if there is a best reply, it is monotonic, but the authors proved it for first price auctions
only. Roughly, Theorem 1 says that there exists a monotonic best reply when the opponents’
strategies do not imply relevant ties or when the allocation rule is smooth. Moreover, it says that

bounded, constructing, for each ε > 0, a finite covering of N with sets of diameter less than ε. This can be done with
step functions for a sufficiently fine grid.
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all best replies are monotonic, with the only possible exception being bids out of the support of
the threshold bid TB(·) (see Remark 1 below).

Theorem 1. Fix an auction Aa = (P, {ui, ui}i∈P ,no, B, S, a) satisfying Assumptions 1–4, where
a is a fair allocation rule or a smooth allocation rule. Fix a profile b−i . If a is a fair allocation
rule, assume additionally that the distribution Fb−i

(β) is absolutely continuous with respect
to the Lebesgue measure (in particular, there is no relevant tie with positive probability). The
following holds: (i) for each ti , Θi(ti ,b−i ) is non-empty; (ii) Consider two types t1

i < t2
i and best

reply bids for them, that is, b1
i ∈ Θi(t

1
i ,b−i ), b2

i ∈ Θi(t
2
i ,b−i ) and assume that these bids imply

different probability of winning, i.e.,

Pr
({

t−i : ai

(
b2
i ,b−i (t−i )

) �= ai

(
b1
i ,b−i (t−i )

)})
> 0.

Then b1
i � b2

i .

The proof of Theorem 1 is given in Appendix A. In the case of smooth allocation rules, the
proof of Theorem 1 is easy to understand. In this case, the interim payoff is just the integral of
its derivative on bi (remember that ui = ui − ui ):

∂bi
Πi = ∂bi

∫ {[
ui(t, b)ai(b) + ui(t, b)

]}
dt−i

=
∫ {

∂bi
ui(t, b)ai(b) + ui(t, b)∂bi

ai(b) + ∂bi
ui(t, b)

}
dt−i .

It is easy to see that the assumptions imply that this is strictly increasing in ti . Now assume that

b1
i > b2

i . Under the maintained assumptions, the difference Πi(ti , b
1
i )−Πi(ti , b

2
i ) = ∫ b1

i

b2
i

∂bi
Πi is

also increasing in ti . Since b1
i is optimum for a player with type t1

i , Πi(t
1
i , b1

i ) − Πi(t
1
i , b2

i ) � 0.
These two facts imply that Πi(t

2
i , b1

i ) − Πi(t
2
i , b2

i ) > 0, but this contradicts the optimality of b2
i

for a player with type t2
i . In the case of fair allocation rules, the proof is just an adaptation of

these ideas.
When Πi(ti , b

1
i ) − Πi(ti , b

2
i ) is (strictly) increasing in ti , Topkis (1978) and Vives (1990)

say that Πi has (strictly) increasing differences. This property was weakened by Milgrom and
Shannon (1994) to the requirement that Πi(ti , b

1
i ) − Πi(ti , b

2
i ), as a function of ti , crosses zero

only once and from below. They called it the single crossing condition. Athey (2001) used the
Milgrom–Shannon single crossing condition to prove the existence of equilibrium in games of
incomplete information.

Remark 1. Theorem 1 has an important consequence: the best-reply map Γi(b−i ) is a “unitary”
set in N , in the following sense. Under the maintained assumptions, Theorem 1 implies that the
sets Θi(ti ,b−i ) and Θi(t

′
i ,b−i ) have at most one point in common if ti �= t ′i . Thus, the set of

types ti where Θi(ti ,b−i ) has a diameter greater than ε > 0 is finite. Then, Θi(ti ,b−i ) is uni-
valued except for a countable set of types ti . Thus, the correspondence ti �−→ Θi(ti ,b−i ) has a
unique selection in L1. By the definition of Γi(b−i ), we conclude that this selection is the unique
function in Γi(b−i ), and it is non-decreasing. Nevertheless, this is true only when

Pr
({

t−i : ai

(
b2

i (ti),b−i (t−i )
) �= ai

(
b1

i (ti ),b−i (t−i )
)})

> 0,

for two functions b2
i and b2

i in the set of best replies. If the two functions induce winning and
losing in the same events (for instance, functions that specify non-serious bids, that is, bids below
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those of the opponents), then it is not always true that the convex combination of best replies is
also a best reply (but this is true under Assumption 5, as we show in the proof of Lemma 3).

This remark clarifies that Theorem 1 cannot be obtained from Topkis’ (1978) Theorem 6.3
or Milgrom and Shannon’s (1994) Theorem 4′, which ensure that all selections of the best-reply
map are non-decreasing. The reason is that such a conclusion is not true in general. Also, it
points out that strict single crossing or strict increasing differences are not necessarily true in our
setting.

Theorem 1 can be used to obtain the following:

Theorem 2. Fix a fair auction with unspecified tie-breaking rule A = (P, {ui, ui}i∈P ,no, B)

satisfying Assumptions 1–4. Then there exists a specification A∗ = (P, {ui, ui}i∈P ,no, B, S, a∗),
where a∗ : Bn × [0,1]n → {0,1}n is a fair allocation rule which requires the announcement of
types to break ties, such that there exists a pure strategy equilibrium (b∗, s∗) for A∗, where b∗
is a profile of non-decreasing functions and s∗ is the identity (that is, the bidders announce their
types truthfully). Moreover, for each i = 1, . . . , n, a∗

i (b∗(t), s∗(t)) is non-decreasing in ti and
non-increasing in t−i .

The proof of Theorem 2 is given in Section 3.2 and its idea is as follows. First, we introduce
a sequence of smooth allocation rules that approximate fair allocation rules. Using Theorem 1, it
is easy to obtain the existence of equilibrium for each auction defined with a smooth allocation
rule in this sequence. Next, we consider the sequence of these equilibria. Since the equilibria
are in the compact set N , they have a convergent subsequence. Using such a subsequence, we
define a tie-breaking rule that sustains the limit of equilibria as the equilibrium of the original
auction. The proof is concluded by arguing that the definition of the tie-breaking rule ensures that
a profitable deviation at the limit would imply a profitable deviation throughout the sequence of
equilibria, which is absurd.

One question that can arise is whether we could use Athey’s proof to obtain our results. The-
orem 2 cannot be derived from Athey’s (2001) Theorems 6 or 7, for two reasons. First, her model
does not allow the dependence of the utility on the bid of opponents as ours does. Second, her
Assumption A3 is not satisfied by the models that we consider (see discussion in Section 3.1
below).

An important point about Theorem 2 is why we need a special tie-breaking rule (that is, a rule
distinct of the standard tie-breaking rule), which is not so usual in auction theory. In the follow-
ing subsection, we discuss why the standard tie-breaking rule is not sufficient for equilibrium
existence.

3.1. Why a special tie-breaking rule?

Since we are treating single and double auctions, the fact that the standard tie-breaking rule
(breaking the tie randomly) is not sufficient to ensure equilibrium existence is easy to establish.
Indeed, consider the following:

Example 1. (See Jackson and Swinkels, 2005, Example 4.) There are two players, a buyer and
a seller, and the payment is the medium of the two bids. The value of the object for the seller
is uniformly distributed on [0,1], that is, u1(t, b) = t1, and she receives the price if she sells:
u1(t, b) = (b1 + b2)/2. The value of the object for the buyer is uniformly distributed on [3,4],
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that is, u2(t, b) = 3 + t2 − (b1 + b2)/2 and the buyer pays nothing if she loses, u2(t, b) = 0.
Jackson and Swinkels (2005) prove that there is no equilibrium for this auction under the standard
tie-breaking rule.

Although there is no equilibrium for the example above under the standard tie-breaking rule, it
exists under a trade-maximizing tie-breaking rule, that is, a rule that specifies that a tie between
a buyer and a seller is solved by giving the object to the buyer. Jackson and Swinkels (2005)
show that this rule is sufficient for private value auctions, but the same is not necessarily true for
interdependent value double auctions. Moreover, even for single-sided auctions, the generality
of our assumptions implies that the equilibrium existence may require special tie-breaking rules.
To see this, consider the following example:

Example 2. (See Jackson et al., 2002, Example 1.) There are two buyers disputing one object.
For i = 1,2, consider ui(b, t) = 5 + ti − 4t−i − bi and ui(b, t) = 0. Observe that this example
satisfies all Assumptions 1–5. Jackson et al. (2002) prove that this auction does not have an
equilibrium under the standard tie-breaking rule. (See also Jackson et al., 2004.)

Since this example satisfies our assumptions, it is not possible to provide an existence result
that does not need a special tie-breaking rule. On the other hand, Athey (2001) proves the exis-
tence of equilibrium under the standard tie-breaking for a class of discontinuous games. Thus, it
is useful to understand why her Theorem 6 does not apply to the above example. Indeed, this ex-
ample satisfies all of her assumptions but Assumption A3, which requires that the expected value
of ui(ti , bi, ·) conditioned on the event of winning with a bid β is nondecreasing in β (main-
taining bi fixed), when the opponents follow non-decreasing strategies. It is easy to see why
Example 2 does not satisfy such an assumption: if the opponents are following non-decreasing
strategies, increasing β , bidder i will win against opponents of a higher type, which implies that
her utility may decrease.

It is also easy to see that Athey’s Assumption A3 is not valid for double auctions: increasing β

may imply that a buyer wins against sellers who are asking higher prices, which may imply a
higher price to be paid and, consequently, a decrease of the expected utility. This explains why
we need special tie-breaking rules for the auctions which we consider.

It is an open question whether it is possible to ensure the equilibrium existence result in our
setting with a tie-breaking that does not require announcement of types. Nevertheless, in the
symmetrical case, Araujo et al. (2008) show that an all-pay auction tie-breaking rule is sufficient
to solve the problem of equilibrium existence. This rule does not require the announcement of
types and is inspired by the Vickrey auction tie-breaking rule used by Maskin and Riley (2000).

Although we do not have a complete characterization of tie-breaking rules, Theorem 2 pro-
vides a partial characterization: the tie-breaking rule is monotonic in the types.

3.2. Proof of Theorem 2

The proof of Theorem 2 is given through a series of lemmas, whose proofs are in the appendix.
We begin by the following fact, whose proof follows the idea of the existence of partition of unity:

Lemma 2. For each m ∈ {2,3, . . .}, there exists a C∞ allocation rule am : Bn → [0,1]n (set
S = {∅} in the original definition), such that:
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(i) if bi > TB(b−i ) + 1
m

, then am
i (b) = 1; and

(ii) if bi < TB(b−i ) − 1
m

, then am
i (b) = 0.17

For each m ∈ {2,3, . . .}, consider the auction game Am = (P, {ui, ui}i∈P ,no, B, S ={∅}, ob-
tained from A by specifying the smooth allocation rules am given by the previous lemma.

Lemma 3. For each m, Am has an equilibrium in non-decreasing strategies.18

Let us denote by bm = (bm
1 , . . . ,bm

n ) the equilibrium of the auction Am. Since {bm} ⊂ Nn, it
has a convergent subsequence. Passing to it (without renaming), we have: bm → b∗. We show
below that b∗ is equilibrium of the auction A∗ = (P, {ui, ui}i∈P ,no, B, S = [0,1], a∗), where
a∗ : Bn × S n → [0,1] is a fair allocation rule that depends, for the case of relevant ties, on the
announcement of types s ∈ S n = [0,1]n. The allocation rule a∗ is defined as follows, if there is
a relevant tie for bidder i (that is, bi = TB(b−i )) and s = (si , s−i ) are the announced types:

a∗
i (b, s) =

{
limm am

i (bm(s)), if bj = lim bm
j (sj ), for all j,

limm am
i (b), otherwise.

The next result concludes the demonstration of Theorem 2.

Lemma 4. Consider the auction A∗ = (P, {ui, ui}i∈P ,no, B, S =[0,1], a∗) and b∗ as defined
above. Let s∗ : [0,1]n → [0,1]n be the identity, that is, s∗

i (ti ) = ti is the strategy of announcing
the own type truthfully. If the opponents are following (b∗−i , s∗−i ), it is optimum for bidder i to
follow (b∗

i , s∗
i ).

4. Positive probability of trade in double auctions

While Theorem 2 ensures the existence of pure strategy equilibrium for different kinds of
auctions, it leaves open the possibility that the equilibrium of a double auction is without trade.
These no trade or trivial equilibria are known to exist: the buyers offer too low, the sellers require
too much and none has an incentive to deviate. In this section we prove that there is a non-
trivial equilibria for double auctions. For this, we require the following assumption, besides the
specification contained in Assumption 6:

Assumption 7. The sets of sellers S = {1,2, . . . , nS} and buyers B = {nS + 1, . . . , n} are non-
empty and they have the utilities specified in Assumption 6. Moreover, for all b ∈ Bn, there exists
K , L′ and L such that:

(i) for all i ∈ P , 0 < L′ � U ′
i � L;

(ii) for all i ∈ P , 0 � ∂bi
pi(bi, b−i ) � K ;

(iii) pi(b) ∈ [max{b,minj=1,...,n bj }, bi] for all i ∈ B;
(iv) pj (b) ∈ [bj ,min{b,maxj=1,...,n bj }] for all j ∈ S;
(v) if bi = TB(b−i ), then pi(b) = bi , for all i ∈ P .

17 Note that these allocation rules are not fair, in the sense of Definition 2.
18 We use Assumption 5 only in the proof of this lemma. Nevertheless, the lemma is valid without it, by Theorem 6.1
of Vives (1990) or by Corollary 2.1 of Athey (2001).
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Items (i) and (ii) of Assumption 7 are limitations of derivatives of utility and payment func-
tions, Ui and pi , respectively; item (iii) says a buyer pays at most her bid; item (iv) says that a
seller receives at least her bid; and item (v) specifies that the payment is the value of the bid in
case of a relevant tie. These are natural assumptions to require.

For each i ∈ P , let wi(ti) be the maximum of possible values of the object for player i with
type ti , that is, wi(ti) ≡ sup{vi(ti , t−i ): t−i ∈ [0,1]n−1}. Similarly, let wi(ti) be the minimum of
possible values of the object for player i with type ti , that is, wi(ti) ≡ inf{vi(ti , t−i ): t−i ∈
[0,1]n−1}. It is clear that wi and wi are non-decreasing functions. Let w be the maximum
possible value for buyers and let w be the minimum possible value for sellers, that is, w ≡
maxi∈B wi(1) and w ≡ minj∈S wj (0).

We need the following:

Assumption 8. (i) b � w < w � b and (ii) there exist a seller j ∈ S, a buyer i ∈ B and types
ti , tj ∈ (0,1) such that wi(ti) > w and wj(tj ) < w.

The first part of this assumption requires that the maximum value for buyers be above the
minimum value for sellers. This part of the assumption is weak and natural. Indeed, if we have
w � w, trade will be profitable for the players with probability zero (from the atomless assump-
tion on the values).

The second part of the assumption is not trivial for interdependent value auctions, although it
is a consequence of the first part for private value auctions (where wi(ti) = wi(ti)). It requires
that there exists a type of a buyer (it can be a very high type, close to 1) whose minimum value is
above the minimum value for sellers; and a type of a seller (it can be a type very close to 0) whose
maximum value is below the maximum value for buyers. For interdependent value auctions, only
condition (i) of Assumption 8 is not sufficient to ensure the existence of trade, as the next example
shows.

Example 3. There is one seller (player 1) and one buyer (player 2); the players are risk-neutral
(that is, U1(x) = U2(x) = x), the value of the object for the seller is uniformly distributed
on [2,3] and privately known by the seller (that is, v1(t1, t2) = t1 + 2) and the value for the
buyer is given by v2(t1, t2) = 3t1 + t2. It is a first price auction for both players (the auctioneer
pockets the difference of the bids). It is easy to see that w = 2 < w = 4. Thus, the first part of
Assumption 8 is satisfied. Also, w1(t1) = t1 + 2 � 3 < 4 = w, which is exactly the condition
wj(tj ) < w in item (ii) of Assumption 8. Nevertheless, w2(t2) = t2 < w = 2 for all t2 ∈ [0,1],
so that the second part of Assumption 8 is not satisfied. This auction has no equilibrium (even
in mixed strategies) with positive probability of trade. To see this, assume that there is a mixed
strategy equilibrium with positive probability of trade. Let β be a bid for which there is positive
probability of negotiation. The seller will accept such an offer only if v1(t1, t2) = t1 + 2 < β (the
event v1(t1, t2) = β has zero measure and the behavior in it does not matter). Thus, the payoff of
a buyer of type t2 that negotiates under β has expected value not greater than:

E
[
(3t1 + t2 − β)1[t1+2�β]

] =
⎧⎨
⎩

0, if (β − 2) < 0,
3
2 (β − 2)2 + (t2 − β)(β − 2), if (β − 2) ∈ [0,1],
t2 + 3

2 − β if (β − 2) > 1.

Observe that the last line is negative for β > 3 (that is, β − 2 > 1), while the maximum value of
the second line for β ∈ [2,3] is 0, achieved by β = 2 (and the expected value is negative for all
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β ∈ (2,3]). Thus, it is better for the buyer to bid β � 2. But the seller accepts such a bid with
zero probability: Pr([t1 + 2 < β � 2]) = 0.

The reader should note that the above example has some of the characteristics of Akerlof’s
(1970) “market for lemons” example. The seller is better informed than the buyer about the
value of the object to the buyer; the buyer does not know the value for the seller, and the range of
possible prices excludes the more valuable sellers. Of course, the example is also related to the
winners’ curse: in case of winning, the buyer will receive a object that is worth less than she was
expecting just considering her original information (without conditioning in the event of win-
ning). This establishes a connection between the winners’ curse and the “market for lemmons”
example.

The logic behind the example explains why we need Assumption 8: simply, the value of the
object for the buyers is such that they cannot guarantee profits with any bid because their values
are too dependent on the values of the sellers. Assumption 8 requires them to ensure a value at
least above the least value of the seller. In such a way, we manage to guarantee that there exists a
price that is good for both parties. The example also shows that it is not sufficient to assume only
one of the two conditions in Assumption 8 (ii): wi(ti) > w or wj(tj ) < w.

We have the following:

Theorem 3. Fix an auction A satisfying Assumptions 1 and 6–8. Then, there is an equilibrium
where trade occurs with positive probability.

Note that Theorem 3 is valid even for just one buyer and one seller, while Jackson and
Swinkels (2005) does not apply to this case. The reason for the difference is that in our set-
ting, the players are always buyers or sellers, which is not valid in Jackson and Swinkels’ (2005)
model. For the point where this difference plays a role in the proof, see footnote 23.

4.1. Proof of Theorem 3

Our proof will follow the same argument as the proof of Theorem 15 of Jackson and Swinkels
(2005)—see also de Castro (2006). For x ∈ {3,4, . . .}, consider an auction Ax modified from A
as follows: besides the strategic players 1,2, . . . , n, there are two non-strategic players, 0 and
n + 1, a seller and a buyer, who play a bid uniformly distributed on [w,w] with probability 1

x
,

and stay out of the auction with probability 1 − 1
x

.19

Our existence result ensures the equilibrium existence for auction Ax (remember that
Lemma 1 says that Assumption 6 implies Assumptions 2–5). Let bx be a pure strategy mono-
tonic equilibrium of Ax . Now consider, as before, the limit bx → b∗ as x → ∞. The proof of
Theorem 2 can be used to argue that b∗ is again an equilibrium of the original auction with an
appropriate fair allocation rule.

Clearly, the probability of trade is continuous in b and is positive for each auction Ax . The
argument consists in finding a contradiction if the probability of trade goes to zero when x →
∞. The contradiction is obtained in Lemma 8 below and consists in finding a player j with a
profitable deviation dj in auction Ax , which contradicts bx being equilibrium of Ax .

19 The strategies can be defined as follows: bx
0 (t0) = xt0(w − w) + w, if t0 < 1

x and bx
0 (t0) = bS

OUT if t0 ∈ [ 1
x ,1];

bx (tn+1) = bB if t0 < 1 − 1 and bx (tn+1) = x(tn+1 − 1 + 1 )(w − w) + w if t0 ∈ [1 − 1 ,1].

n+1 OUT x n+1 x x
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For this, we first prove that if the probability of trade goes to zero, then the probability of bids
by buyers above w − 2δ goes to zero, as does the probability of bids by sellers below w + 2δ.
This is the content of the following lemma.

Lemma 5. Fix 0 < 2δ < min{wi(ti) − w,w − wj(tj )}, for i ∈ B , j ∈ S and types ti , tj ∈ (0,1)

given by Assumption 8. Assume that there is a subsequence of auctions Ax such that equilibrium
profiles bx specify a probability γ > 0 of bids by sellers below w + 2δ (alternatively, of bids by
buyers above w − 2δ). Then, the probability of trade along this subsequence is bounded away
from zero.

We also need a characterization of profitable deviations in our setting, which the following
lemmas provide.

Lemma 6. Fix a buyer i ∈ B , a type ti ∈ [0,1] and a profile b−i of strategies followed by buyer i’s
opponents, that is, players j �= i. Consider the deviation from a bid β1 to the bid β2 > β1. The
deviation is advantageous to buyer i if

L′(wi(ti) − β2
)

Pr
[
ai(β2, ·) > ai(β1, ·)

]
> LK(β2 − β1)P r

[
ai(β1, ·) > 0

]
.

Lemma 7. Fix a seller j ∈ S, a type tj ∈ [0,1] and a profile b−j of strategies followed by
seller j ’s opponents. Consider the deviation from a bid β1 to the bid β2 < β1. The deviation is
advantageous to seller j if

L′(β2 − wj(tj )
)

Pr
[
ai(β1, ·) > ai(β2, ·)

]
> LK(β1 − β2)Pr

[
ai(β1, ·) < 1

]
.

Lemmas 5, 6 and 7 provide the results necessary to adapt the proof of Jackson and Swinkels
(2005) to the setting of auctions with interdependent values. In other words, the proof of the
following lemma follows closely the proof of their Theorem 15:

Lemma 8. If the probability of trade goes to zero, there exists an x, a player j ∈ P and a
deviation dj from bx

j , which is profitable for player j in the auction Ax .

This concludes the proof of Theorem 3.

5. Conclusion: related literature and the contribution

The main contributions of this paper are: (1) a proof of existence of monotonic pure strat-
egy equilibrium in a setting where only the existence of a mixed strategy equilibrium is known;
(2) a proof of existence of trade with positive probability for auctions with asymmetrical inter-
dependent values.

A paper that includes our setting is Jackson et al. (2002), who prove the existence of asym-
metrical mixed strategy equilibrium with any distribution of types. They used the “endogenously
defined” tie-breaking rule solution concept introduced by Simon and Zame (1990), as we do too.
We particularize their assumptions to the independent types’ case, but we are able to obtain the
existence in monotonic pure strategies.

Athey (2001), for general games, and Reny and Zamir (2004), for first-price auctions, ob-
tained monotonic pure strategy equilibrium without special tie-breaking rules. Nevertheless, they
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assumed the monotonicity of the utilities with respect to all types and do not consider double auc-
tions, as we do.

Williams (1991) considers symmetric double auctions with independent types. Jackson and
Swinkels (2005) consider (multi-unit) asymmetrical double auctions with general distribution of
types, but they are restricted to the private value case. In this setting, they are able to prove that
the tie-breaking rule does not matter, a result that does not hold in our setting, as we argued in
Section 3.1. Reny and Perry (2006) and Fudenberg et al. (2007) consider symmetrical double
auctions with conditionally independent types but are only able to prove the existence of equi-
librium when the number of players is high. Thus, these works do not cover our equilibrium
existence result for asymmetrical double auctions with interdependent values and small number
of players.

Also, the previous results ensuring the existence of pure strategy equilibrium do not consider
utilities that may be decreasing in the signal of opponents. Thus, they do not need special tie-
breaking rules as our setting requires.

Our method of proof is related to that used by Fudenberg et al. (2007). They also used a
perturbation of the allocation rule and worked with a compact space of functions. Their space is
that of functions near the identity. Accordingly, they do not need special tie-breaking rules, but
do need a large number of players, which is not necessary in our case. On the other hand, they
work with conditional independent private values, while we work with independent variables.
The assumption of large number of players was used by them to ensure that best replies are
increasing, which is similar to the role of the independence assumption in our paper.

We also show that the argument of convexity can be made straightforwardly, if we require
Assumption 5, which is always satisfied by auctions.

The other main contribution of the paper is the result concerning positive probability of trade.
While Jackson and Swinkels (2005) established it for a general model of private value auctions,
we show by a counterexample that this result is not necessarily true for interdependent value auc-
tions. This counterexample establishes a connection between Akerlof’s “market for lemmons”
and the winners’ curse. Introducing an appropriate condition, we are able to prove the existence
of a non-trivial equilibrium.
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Appendix A

The proof of Theorem 1 requires the following lemma.

Lemma A.1. Let the conditions of Theorem 1 hold. The payoff of bidder i can be expressed by

Πi(ti , bi,b−i ) = Πi(ti , b∗,b−i ) +
∫

[b∗,bi )

∂bi
Πi(ti , β,b−i )dβ

where ∂b Πi(ti , β) exists for almost all β ∈ (b∗, b∗) and is given by

i
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∂βΠi(ti , β,b−i ) = E
[
∂bi

ui

(
t1
i , ·)1[β>TB(b−i (·))]

] + E
[
∂bi

ui

(
t1
i , ·)1[β<TB(b−i (·))]

]
+ E

[
ui

(
t, β,b−i (t−i )

) | TB
(
b−i (·)

) = β
]
fb−i

(β). (A.1)

This lemma can be proved using the Leibniz rule. For a proof in a more general setting, see
de Castro and Riascos (2007). Now, we proceed to the proof of Theorem 1.

Proof of Theorem 1. Let us first consider a fair allocation rule. Under the assumption on b−i ,
Πi(ti , bi,b−i ) is continuous. Since B is compact, Θi(ti ,b−i ) is obviously non-empty (and com-
pact). For the second part, assume that t1

i < t2
i , b1

i ∈ Θi(t
1
i ,b−i ), b2

i ∈ Θi(t
2
i ,b−i ), b2

i < b1
i and

Pr
({

t−i : ai

(
b2
i ,b−i (t−i )

)
< ai

(
b1
i ,b−i (t−i )

)})
> 0. (A.2)

Since [0,1]n−1 and Bn are compact and ui is (absolutely) continuous, there exists δ > 0 such
that ui(t

1
i , t−i , b) + 2δ < ui(t

2
i , t−i , b) for all t−i ∈ [0,1]n−1 and all b ∈ Bn. For a bid β ∈ B ,

define the functions

g1(t−i ) = ui

(
t1
i , t−i , β,b−i (t−i )

)
, and g2(t−i ) = ui

(
t2
i , t−i , β,b−i (t−i )

)
.

Then, g1(t−i ) + 2δ < g2(t−i ). By the positivity of conditional expectations,20

E
[
g2 − g1 − 2δ | TB

(
b−i (·)

) = β
]
� 0.

Thus, from the independence of types, we conclude that

E
[
ui

(
t1
i , ·) | TB

(
b−i (·)

) = β
] + δ < E

[
ui

(
t2
i , ·) | TB

(
b−i (·)

) = β
]
. (A.3)

By Assumption 4,

E
[
∂bi

ui

(
t1
i , ·)1[β>TB(b−i (·))]

]
� E

[
∂bi

ui

(
t2
i , ·)1[β>TB(b−i (·))]

]
(A.4)

and

E
[
∂bi

ui

(
t1
i , ·)1[β<TB(b−i (·))]

]
� E

[
∂bi

ui

(
t2
i , ·)1[β<TB(b−i (·))]

]
. (A.5)

Then, (A.3), (A.4), (A.5) and the expression of ∂bi
Πi(ti , β,b−i ) given by (A.1) imply that for

almost all β ,

∂bi
Πi

(
t2
i , β,b−i

)
> ∂bi

Πi

(
t1
i , β,b−i

) + δfb−i
(β). (A.6)

The difference Πi(t
2
i , b1

i ,b−i ) − Πi(t
2
i , b2

i ,b−i ) can be written as the integral:∫

[b2
i ,b1

i )

∂bi
Πi

(
t2
i , β,b−i

)
dβ >

∫

[b2
i ,b

1
i )

∂bi
Πi

(
t1
i , β,b−i

)
dβ + δ

∫

[b2
i ,b1

i )

fb−i
(β)dβ

� δ
[
Fb−i

(
b1
i

) − Fb−i

(
b2
i

)]
� 0,

where the first inequality comes from (A.2) and (A.6); the second comes from the fact that
b1
i ∈ Θi(t

1
i ,b−i ), that is,∫

[b2
i ,b1

i )

∂bi
Πi

(
t1
i , β,b−i

)
dβ � 0;

20 See, for instance, Kallenberg (2002, Theorem 6.1, p. 104).
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and the third comes from b1
i > b2

i . Now, this implies that Πi(t
2
i , b1

i ,b−i ) > Πi(t
2
i , b2

i ,b−i ),
which contradicts the fact that b2

i ∈ Θi(t
2
i ,b−i ).

The proof for smooth allocation rules is similar. First, we observe that the ex post utility
ui(t, b)ai(b) + ui(t, b) is continuous and has increasing differences in (ti , bi), because

∂bi
ui(t, b)ai(b) + ui(t, b)∂bi

ai(b) + ∂bi
ui(t, b)

is increasing in ti . Since the expression of ∂bi
Πi(t

1
i , β,b−i ) is the integral of the above expres-

sion, we can repeat the arguments and use (A.2) to obtain the same conclusion. �
Proof of Lemma 2. Let a : Bn → [0,1]n be any fair allocation rule and consider n independent
and identically distributed variables εi , with support contained in (−1

2m
, 1

2m
) and whose density

function is C∞. Define, for each i,

am
i (b) = E(εi)i∈P

[
ai

(
(bi + εi)i∈P

)] = Pr
{
(εi)i∈P : bi + εi > TB

(
(bj + εj )j �=i

)}
.

Ties in the bids (bi + εi)i∈P occur with zero probability so that the expectation above is equal
across all the fair allocation rules and is well-defined.

Now, we verify conditions (i)–(iv) of Definition 1. It is easy to see that t �→ am(b(t)) if t �→
b(t) is measurable. Thus, (i) is satisfied. For each realization of (εi)i∈P , we have

∑
i∈P

ai((bi +
εi)i∈P ) = no with probability one. Thus,

∑
i∈P

am
i (b) = no, which implies condition (ii).

It is easy to see that am
i is non-decreasing in bi and non-increasing in bj , for j �= i, which is

condition (iii). Condition (iv) is trivial, since S = {∅} for am. The lemma is proved. �
Proof of Lemma 3. Fix m and define the set-valued map ϒm

i (b−i ) ≡ Γ m
i (b−i ) ∩ N , where Γ m

i

is the best-reply map for auction Am. For simplicity, we omit the upperscript m.
It is easy to see, from continuity and Theorem 1, that ϒi :Nn−1 → N is upper semicontinuous

with non-empty values. Let us show that it has convex values.
Suppose that bi ,b′

i ∈ ϒi(b−i ), with bi �= b′
i . Then, there exists a positive probability set of

types ti such that bi (ti ) �= b′
i (ti). By Theorem 1, this can occur only if

Pr
({

t−i : ai

(
bi (ti ),b−i (t−i )

) �= ai

(
b′

i (ti),b−i (t−i )
)}) = 0,

for almost all ti . Since ai is non-decreasing in bi , we have that for every b̄i = αbi + (1 − α)b′
i ,

Pr
({

t−i : ai

(
b̄i (ti ),b−i (t−i )

) �= ai

(
b′

i (ti),b−i (t−i )
)}) = 0,

for almost all ti . Since ui and ui are weakly monotonic in the same direction, by Assumption 5,
and bi (ti) and b′

i (ti ) give the same probability of winning to bidder i, it should be that the ex-
pectation of uiai +ui(1 − ai), that is, the interim payoff, is constant between bi (ti) and b′

i (ti ).
21

Thus, the convex combination b̄i gives the same payoff as bi and b′
i . Thus, b̄i ∈ Γi(b−i ). It is

clear that b̄i ∈ N , because bi ,b′
i ∈ N . This shows that ϒi has convex values.

Define the upper semicontinuous and convex-valued map ϒ :Nn → Nn as the product of
the ϒi . It is defined on the compact convex set Nn. By Kakutani–Fan–Glicksberg Theorem, it
has a fixed point, denoted by bm = (bm

1 , . . . ,bm
n ), which is an equilibrium of the auction Am. �

21 The same argument works if Assumption 5 is changed to the requirement that one of the functions ui or ui does not
depend on bi and the other is quasiconcave as a function of bi .
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Proof of Lemma 4. First, we establish the following:

Claim A.1. Given that other players are using their strategies (b∗−i , s∗−i ), then for all strategies

(b̂i , ŝi ) of player i there exists a sequence of strategies b̂m
i such that

lim
m→∞V m

i

(
b̂m

i ,bm
−i

) = V ∗
i

((
b̂i , ŝi

)
,
(
b∗−i , s∗−i

))
.

Proof. If ŝi (ti ) is such that limm bm
i (ŝi (ti )) = b̂i (ti), define b̂m

i (ti) = bm
i (ŝi (ti )).

If lim bm
i (ŝi (ti )) �= b̂i (ti ), define b̂m

i (ti) = b̂i (ti) for all m. In the first case the limit allocation

a∗
i (b̂i (ti),b∗

i (ti ), ŝi , s∗−i ) is

lim
m→∞am

i

(
bm

i

(
ŝi (ti)

)
,bm

−i (t−i )
) = lim

m→∞am
i

(
b̂m

i (ti),b∗−i (t−i )
)
.

In the second case we have am
i (b̂m

i (ti),b∗−i (t−i )) → a∗
i (b̂i (ti ),b∗

i (ti ), ŝi , s∗−i ). In both cases we

have b̂m
i (ti) → b̂i (ti ) and

lim
m→∞am

i

(
b̂m

i (ti),b∗−i (t−i )
) = a∗

i

(
b̂i (ti ),b∗

i (ti), ŝi , s∗−i

)
.

Thus, the function t �→ uia
m
i + (1 − am

i )ui , with bids defined by (b̂m
i ,bm

−i ), converge a.e. to

t �→ uia
∗
i + (1 − a∗

i )ui , where the bids and allocations are defined by ((b̂i , ŝi ), (b∗−i , s∗−i )). Thus,

by the Lebesgue convergence theorem, V m
i (b̂m

i ,bm
−i ) → V ∗

i ((b̂i , ŝi ), (b∗−i , s∗−i )). �
The rest of the proof is trivial. Assume that a player i has an improving deviation (b̂i , ŝi ) from

(b∗
i , s∗

i ) when the opponents follow (b∗−i , s∗−i ), that is,

V ∗
i

((
b̂i , ŝi

)
,
(
b∗−i , s∗−i

))
> V ∗

i

((
b∗

i , s∗
i

)
,
(
b∗−i , s∗−i

)) + 2ε,

for some ε > 0. By the claim, there exists a sequence b̂m
i such that for a sufficiently high m,

V m
i

(
b̂m

i ,bm
−i

)
> V m

i

(
bm

i ,bm
−i

) + ε,

which contradicts the fact that (bm
i ,bm

−i ) is equilibrium for the auction Am. �
Proof of Lemma 5. Consider the first case, that is, there is probability γ > 0 of bids by sellers
below w + 2δ. Let ρx the probability of buyer bids above w + 2δ. If ρx � ρ for all x and some
ρ > 0, then the probability of trade is at least γρ > 0 and the claim is valid. If ρx → 0, then for
sufficiently high x, there is a probability 1/2 that there is no buy bid above w + 2δ. Consider the
strategy of buyer i that specifies the bid bB

OUT for all types t ′i < ti and the bid w + 2δ otherwise.
From the fact that pi(w + 2δ,b−i (t−i )) � w + 2δ (Assumption 7(iii)) and w + 2δ < wi(ti) (by
definition of δ), there exists η > 0 such that Ui(vi(t

′
i , t−i ) − pi(w + 2δ,b−i (t−i ))) � η for all

t ′i � ti and t−i ∈ [0,1]n−1. Thus, such strategy ensures at least the payoff ηγ/2 > 0 for suffi-
ciently high x. Thus, it is impossible that trade goes to zero, since this would imply payoff going
to zero. This contradicts trade going to zero. By an analogous argument, one obtains a contradic-
tion for the case where there is probability γ > 0 of bids by buyers above w − 2δ. �
Proof of Lemma 6. In the expressions below, we will omit the term b−i . The payoff of bid-
ding βk is
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Πi(ti , βk) = E−i

[
Ui

(
vi(ti , t−i ) − pi(βk, ·) − ei

)
ai(βk, ·)

]
+ E−i

[
Ui(−ei)

(
1 − ai(βk, ·)

)]
,

for k = 1,2. The difference Πi(ti , β2) − Πi(ti , β1) is equal to

E−i

{[
Ui

(
vi(ti , t−i ) − pi(β2, ·) − ei

) − Ui(−ei)
]
ai(β2, ·)

}
− E−i

{[
Ui

(
vi(ti , t−i ) − pi(β1, ·) − ei

) − Ui(−ei)
]
ai(β1, ·)

}
= E−i

{[
Ui

(
vi(ti , t−i ) − pi(β2, ·) − ei

) − Ui(−ei)
][

ai(β2, ·) − ai(β1, ·)
]}

− E−i

{[
Ui

(
vi(ti , t−i ) − pi(β1, ·) − ei

) − Ui

(
vi(ti , t−i ) − pi(β2, ·) − ei

)]
ai(β1, ·)

}
.

Since vi(ti , t−i ) � wi(ti) for all t−i and pi(β2, ·) � β2, then the term on the third line above is
not lesser than

L′(wi(ti) − β2
)

Pr
[
ai(β2, ·) > ai(β1, ·)

]
.

On the other hand, since Ui and pi are differentiable and U ′
i � L, ∂bi

pi � K ,22

Ui

(
vi(ti , t−i ) − pi(β1, ·) − ei

) − Ui

(
vi(ti , t−i ) − pi(β2, ·) − ei

)
� L

[
pi(β2, ·) − pi(β1, ·)

]
� LK(β2 − β1).

Thus, the deviation will be profitable if

L′(wi(ti) − β2
)

Pr
[
ai(β2, ·) > ai(β1, ·)

]
> LK(β2 − β1)P r

[
ai(β1, ·) > 0

]
. �

Proof of Lemma 7. The difference Πj(tj , β2) − Πj(tj , β1) is equal to

E−i

[
Uj

(
vj (tj , t−j ) − ei

)
ai(β2, ·) + Uj

(
pj (β2, ·) − ei

)(
1 − ai(β2, ·)

)]
− E−i

[
Uj

(
vj (tj , t−j ) − ei

)
ai(β1, ·) + Uj

(
pj (β1, ·) − ei

)(
1 − ai(β1, ·)

)]
= E−i

{[
Uj

(
pj (β2, ·) − ei

) − Uj

(
vj (tj , t−j ) − ei

)](
ai(β1, ·) − ai(β2, ·)

)}
− E−i

{[
Uj

(
pj (β1, ·) − ei

) − Uj

(
pj (β2, ·) − ei

)](
1 − ai(β1, ·)

)}
.

As before, we have:

Uj

(
pj (β2, ·) − ei

) − Uj

(
vj (tj , t−j ) − ei

)
� L′[pj (β2, ·) − wj(tj )

]
� L′(β2 − wj(tj )

)
,

and

Uj

(
pj (β1, ·) − ei

) − Uj

(
pj (β2, ·) − ei

)
� LK(β1 − β2).

Thus, the deviation will be profitable if

L′(β2 − wj(tj )
)

Pr
[
ai(β1, ·) > ai(β2, ·)

]
> LK(β1 − β2)Pr

[
ai(β1, ·) < 1

]
. �

Proof of Lemma 8. As we said before, this is an adaptation of the proof of Theorem 15 of
Jackson and Swinkels (2005). (See also de Castro, 2006.) Thus, we will follow their notation and
refer to their results whenever they apply to our case. Let H ⊂ B be the set of buyers i for whom

22 Using the mean value theorem, we have the following: if f : [a, b] → R is differentiable and f (b)−f (a) > M(b−a),
then there is a c ∈ (a, b) such that f ′(c) > M .
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wi = w. There is ω > 0 such that for each i ∈ H , there is a probability of at least ω that there is
a seller with value below w − ω, and such that for each i /∈ H , i is a seller or wi < w − ω. In
particular, w < w − ω.

Consider an arbitrary k ∈ {3,4, . . .}, and let δ < ω/k. Fix an equilibrium strategy bx . For
i = 1, . . . , n+1, let Qx

Bi = 1 if bidder i is a buyer and bids above w−2δ and Qx
Bi = 0 otherwise.

For each x, let

μx = max
i∈H

Prx
{
Qx

Bi = 1
}

be the maximum probability that any buyer (not n + 1) makes a bid above w − 2δ in Ax (by the
definition of ω, Prx{Qx

Bi = 1} = 0 for each player in N\H ). Let ix be an associated maximizer
of μx .

Let Qx
B = ∑n+1

i=1 Qx
Bi be the random variable giving the number of buyer bids above w − 2δ

under bx (including the bids of player n + 1). Let Qx
S be the number of seller bids at or below

w − 2δ. Observe that this does not include player ix who is a buyer.
Lemma 5 establishes that if the trade goes to zero, then Prx{Qx

B > 0} → 0 and
Prx{Qx

S > 0} → 0 must hold. Now, an argument of Jackson and Swinkels (2005) shows that

Prx
(
Qx

B = 1 | Qx
B > 0

) → 1. (A.7)

Choose a subsequence along which ix is constant. Consider the deviation dj for sellers j ∈ S,
that whenever wj(tj ) � w − ω, and the equilibrium specifies a bid above w − 2δ, j submits
w − 2δ instead. We will obtain a contradiction if this is not improving for at least one j ∈ S.

Let Cx
j denote the event where ai(bx

j (ti),bx
j (t−j )) < 1 and let Dx

j denote the event where
ai(bx

j (ti),bx
j (t−j )) > ai(dj (ti),bx

j (t−j )). We have the following Corollary to Lemma 7:

Corollary A.1. dj is a profitable deviation for seller j if

L′(ω − 2δ)Pr
[
Dx

j

]
> 2δLK Pr

[
Cx

j

]
.

Proof. The deviation specifies the bid β2 = w − 2δ, differently from the equilibrium strategy
only when wj(tj ) � w − ω, and the equilibrium specifies a bid β1 ∈ (w − 2δ,w], where the
limitation above for β1 comes from the fact that the seller will never receive more than w. Then,
β2 − wj(tj ) � ω − 2δ and β1 − β2 � 2δ. �

Consider the following set of events, whose dependence on x will be omitted:
E1: Qx

B > 0.23

E2: Qx
S = 0.

E3j : Player j has not sold her unit and wj(tj ) � w − ω.
E4: Qx

B � 1.
E5: There is a seller j such that wj(tj ) � w − ω.

Note that Prx(E1) = μ̂x . Arguing as Jackson and Swinkels (2005), we have that for x suffi-
ciently large,

Prx(E1 ∩ E2 ∩ E4 ∩ E5) � ω

2
μ̂x.

23 Our definition of this set can be simpler than Jackson and Swinkels (2005) because in our setting players are always
buyers or always sellers, Jackson and Swinkels (2005) unlike. This difference is also the reason why we are able to prove
the existence of trade when there is just one buyer and one seller, which is not allowed by Jackson and Swinkels’ (2005)
assumptions.
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Since Dx
j includes the set E1 ∩ E2 ∩ E3j , we have

Pr
[
Dx

j

]
� Prx(E1 ∩ E2 ∩ E3j ∩ E4 ∩ E5) � Prx(E3j | E1 ∩ E2 ∩ E4 ∩ E5)

ω

2
μ̂x.

On the other hand, j sells under bx with probability Pr[Cx
j ], which is bounded by

Prx(Qx
B > 0). Jackson and Swinkels (2005) establishes that Prx(Qx

B > 0) � nμ̂x . From the
previous corollary, in order for the deviation not to be profitable, it must be that

L′(ω − 2δ)Prx(E3j | E1 ∩ E2 ∩ E4 ∩ E5)
ω

2
μ̂x � 2δLKnμ̂x.

Dividing both sides by μ̂xδ (which is valid, because μ̂x is positive thanks to player n + 1),
and summing across sellers,

ω

2

(ω

δ
− 2

)∑
j∈S

Prx(E3j | E1 ∩ E2 ∩ E4 ∩ E5) � nSn2LK.

But in any realization where E1 ∩ E2 ∩ E4 ∩ E5 holds, E3j must hold for at least one sel-
ler j ∈ S, since E5 specifies that for at least one seller j , wj(tj ) � w − ω, since no sell bid is at
or below w − 2δ, and since there is one buy offer above w − 2δ. Thus the sum of probabilities
above is at least 1 and so

ω

2

(ω

δ
− 2

)
� nSn2LK.

Recall that k ∈ {3,4, . . .} is arbitrary and that δ was chosen so that ω/k > δ. It follows that
ω

2
(k − 2) � nSn2LK.

This equation is clearly false for k sufficiently large, and we have the desired contradic-
tion. �
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