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1 Introduction

The existence of equilibrium for discontinuous games depends on special definition
of the payoff at discontinuities. This was first pointed out by Simon and Zame (1990)
for games of complete information, and by Jackson et al. (2002), henceforth JSSZ, for
games of incomplete information.

Both papers offer interesting examples where there is no equilibrium if the payoff at
discontinuities is defined in the usual manner. Indeed, for most of the games there is a
standard way to define the payoff at discontinuities. For auction games, discontinuities
occur at ties (with positive probability) and it is usual to define the payoff at such points
through the standard tie-breaking rule, which consists in randomly splitting the object
among the tying bidders.

Motivated by examples, both papers offer a solution concept where the payoff at the
discontinuities is defined as the limit point of a sequence of payoffs. Thus, the payoff
is “endogenously defined” at the discontinuities and impossible to characterize, since
there is no available criterion to select a priori which accumulation point is the correct
one.

In the standard definition of a game, the payoffs of all players for every profile
of actions are specified. Thus, their solution requires the definiton of the game to
be weaker (or more incomplete) than the usual one. This suggests the importance of
understanding when special rules are really needed and obtaining the explicit payoff
at discontinuities that ensure equilibrium existence. For auctions, this means explicit
tie-breaking rules.

Simon and Zame (1990) write: “. . .the same sharing rule should not be expected
to work for all problems. Indeed, even within the same problem, different sharing
rules may be appropriate at different points” (p. 862). Nevertheless, we show that it is
possible to define an explicit tie-breaking rule that works for a class of auctions.

Specifically, we show that the all-pay auction tie-breaking rule is sufficient for
the existence of pure strategy equilibria in a set of symmetric auctions for which the
best results available (JSSZ) ensure only the existence in mixed strategies with an
endogenously defined tie-breaking rule.1 Furthermore, we completely characterize
when the standard tie-breaking rule is enough.

The rule is: if there is a tie, conduct an all-pay auction among the tying bidders.
If there is still a tie, split the object randomly.2 We show that ties occur with zero
probability in the second round, which ensures equilibrium existence in pure strategies.
Moreover, the all-pay auction tie-breaking rule does not require communication of
private information, as JSSZ’s solution does.

Besides the definition of an explicit tie-breaking rule, we characterize the situa-
tions where they are really needed. We illustrate this characterization with JSSZ’s
Example 1. This is a standard first-price auction except for the fact that the bidder’s
payoff is decreasing in the opponents’ types, although increasing in her own (this is

1 In this paper, we focus only on pure strategy equilibria.
2 The all-pay auction tie-breaking rule is similar to Maskin and Riley’s second-price auction tie-breaking
rule (Maskin and Riley 2000), where the tie is broken through a second-price auction, instead of an all-pay
auction, as in our case.
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Non-monotoniticies and the all-pay auction tie-breaking rule 409

also similar to example 3 of Maskin and Riley 2000). The need for special tie-breaking
rules is thus related to non-monotonicities. In fact, it turns out that non-monotonicities
of the payoff function are crucial to the need of special tie-breaking rules—when types
and values do not have atoms.3

We argue that non-monotonicities may arise in meaningful economic situations (see
Sect. 4). Thus, the point goes beyond the technical interest in equilibrium existence.
Our results suggest that the all-pay auction is a good mechanism to “rank” the bid-
ders’ information as required for equilibrium existence (see the discussion following
Theorem 3, in Sect. 3.2).

Nevertheless, not all non-monotonic utility functions require special tie-breaking
rules. As stated above, our results allow us to characterize the set of symmetric auctions
for which the standard tie-breaking rule is sufficient to ensure equilibrium existence.
It turns out that this strictly contains the set of auctions with non-decreasing interde-
pendent values, but may also include situations like example 1 of JSSZ. In addition,
we will show that there are examples close to theirs that do not have equilibrium with
the standard tie-breaking rule.4

The paper is organized as follows: in Sect. 2 we present the model. Section 3 gives
the main results for unidimensional auctions with monotonic equilibria: the all-pay
auction tie-breaking rule is introduced and equilibrium existence is proved. In Sect. 4
we discuss why non-monotonicities can be of interest. In Sect. 5 we extend some
results to multidimensional auctions and non-monotonic value and bidding functions.
Section 6 concludes with a discussion on the related literature. An appendix collects
the proofs.

2 The model

There are N bidders in an auction of a single object.5 Player i (i = 1, . . . , N ) has
private information ti ∈ S, where (S, �,µ) is a non-atomic probabilistic space.6

Then, bidder i chooses a bid bi ∈ B ≡ {bOU T } ∪ [bmin,+∞), where bmin > bOU T is
the minimal valid bid. If bi = bOU T , bidder i does not participate in the auction and
gets 0.

Let
(
SN , �N , µN

)
be the product of N independent copies of (S, �,µ), defined

in the usual way. Let t = (ti , t−i ) ∈ SN be the profile of signals and b = (bi , b−i ) the
profile of submitted bids. The cutoff that determines the winning and losing events for
bidder i is

b(−i) ≡ max{bmin, b1, . . . , bi−1, bi+1, . . . , bN }.
i.e., the bidder i receives the object if bi > b(−i) and none if bi < b(−i). If the tie-
breaking rule is not explicitly mentioned, we assume that ties (bi = b(−i)) are broken

3 For the case of first-price auctions with atoms in the distribution of private values, see Monteiro (2004).
4 The Example 2 in Sect. 3.2 embeds example 1 of JSSZ in a class of parametrized examples. By “a close
example” we mean a neighborhood of the parameters that specify their example.
5 The model can be easily extended to L < N homogenous objects, if each bidder’s demand is unitary.
6 In Sect. 3 we consider only the case S = [0, 1] ⊂ R and N = 2. In Sect. 5 we comment on how these
assumptions can be relaxed.
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by the standard tie-breaking rule, that is, the object is randomly divided among the
tying bidders. More specifically, the payoff of bidder i is given by

ui (t, b) =
⎧
⎨

⎩

v (ti , t−i ) − pW
(
bi , b(−i)

)
, if bi > b(−i)

−pL
(
bi , b(−i)

)
, if bi < b(−i)

v(ti ,t−i )−bi
m(b)

, if bi = b(−i)

where v (ti , t−i ) is the value of the object for bidder i , pW and pL are the payments
made in the events of winning and losing, respectively, and m(b) is the number of
tying bidders.

Our setting is given by the following assumptions:

Assumption 1 Types are independently distributed in
(
SN , �N , µN

)
, where µ is the

marginal distribution for the type of each bidder. Players are risk-neutral and the value
of the object for player i is given by v (ti , t−i ), where the function v : S×SN−1 → R+
is measurable, its range is the compact interval

[
v, v

] ⊂ R+ and it is symmetric in the
last N − 1 arguments, that is, if t ′−i is a permutation of t−i , v

(
ti , t ′−i

) = v (ti , t−i ) .
Moreover, µN ◦ v−1 is absolutely continuous with respect to the Lebesgue measure.7

The most restrictive requirement of Assumption 1 is symmetry, although inde-
pendence is also restrictive. However, available results on pure strategy equilibrium
existence are restricted to independency or affiliation. On the other hand, note that
Assumption 1 does not require any kind of monotonicity and, thus, generalizes, in this
direction, assumptions usually required in auction models.

The specific auction format is determined by pW and pL . We will alternatively
consider two cases. The first one, embodied in Assumption 2(i) below, covers first-
price auctions and all-pay auctions. The second case, defined by Assumption 2(ii),
covers second-price auctions, among other formats.

Assumption 2 For j = W or L , p j (·, ·) � 0, p j (bOU T , ·) = 0, ∂1 p j � 0,
p j (·, bOU T ) = p j (·, bmin), p j is differentiable over (bmin,∞) × (bmin,∞),
pL (bmin, b) = pL

(
bmin, b′) fr all b and b′ and one of the two conditions below

is satisfied:

(i) ∂1 pW (·) > 0 or ∂1 pL (·) > 0;
(ii) ∂1 pW = ∂1 pL ≡ 0 and ∂2

(
pW − pL

)
> 0.

Assumption 2 allows us to cover virtually all kinds of standard single-object or
multi-unit auctions with unitary demands and encompasses the use of entry fee. Some
important examples are:

(A) All-pay auctions: pW
(
bi , b(−i)

) = bi and pL
(
bi , b(−i)

) = bi .

(F) First-price auctions: pW
(
bi , b(−i)

) = bi and pL
(
bi , b(−i)

) = 0.

7 That is, if C ⊂ R has zero Lebesgue measure, then µN {(ti , t−i
) ∈ SN : v

(
ti , t−i

) ∈ C} = 0. Observe

that this implies that µN is non-atomic. Thus, this part of the assumption is just a generalization of the usual
assumption for monotonic auctions, where v is strictly increasing with ti and µN is non-atomic. Indeed,
these conditions imply the absolute continuity of µN ◦ v−1.
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Non-monotoniticies and the all-pay auction tie-breaking rule 411

(S) Second-price auctions: pW
(
bi , b(−i)

) = b(−i) and pL
(
bi , b(−i)

) = 0.

(W) War of attrition: pW
(
bi , b(−i)

) = b(−i) and pL
(
bi , b(−i)

) = bi .

An active reserve price, that is, bmin, which excludes some bidders, is dealt with in
the Appendix. However, for a simple statement of the results, we restrict our exposition
to the case where the reserve price is not active, as summarized by the following
assumption:

Assumption 3 v, pW , pL and bmin are such that no bidder plays bOU T , that is, no
bidder prefers to stay out of the auction.

We denote the auction described above by A = (S, �,µ, N , v). Observe that we
are considering only symmetric auctions. Thus, throughout the paper, when we refer
to a strategy or to a profile of strategies, we always mean symmetric pure strategies.

3 Pure strategy monotonic equilibria for non-monotonic auctions

Our first aim is to characterize the conditions under which there exist symmetric
monotonic equilibria in a setting where the payoff functions are not necessarily mo-
notonic. For all results of this section, we consider an auction A = (S, �,µ, N , v)

satisfying Assumptions 1, 2 and 3 and such that N = 2 (there are only 2 players) and
S = [0, 1] ⊂ R.8

Let us denote by p (β, b) the expected payment of a bidder who plays a bid β, when
the opponent is playing an increasing strategy b : [0, 1] → R in the auction A, that
is,

p (β, b) ≡
b−1(β)∫

0

pW (β, b (α)) dα +
1∫

b−1(β)

pL (β, b (α)) dα.

The first useful result that we derive is the Revenue Equivalence Theorem for our
setting.

Proposition 1 (Revenue Equivalence Theorem) Let b : [0, 1] → [bmin,+∞) be a
strictly increasing symmetric equilibrium of A. If v is continuous, then

p (b (y) , b) =
y∫

0

v (α, α) dα. (1)

Proof It is a direct consequence of Proposition 7 in the Appendix. 	

We also have the following:

8 All the results of this section can be extended to N > 2 players, as we explain in Sect. 5, but we keep
N = 2 to simplify notation. In that section we also discuss the extensions to multidimensional type spaces.

123



412 A. Araujo et al.

Proposition 2 Assume that v is continuous. If b : [0, 1] → [bmin,+∞) is a strictly
increasing symmetric equilibrium of A, then Assumption 2(i) implies that b is diffe-
rentiable and

b′ (x) = v (x, x) − pW (b (x) , b (x)) + pL (b (x) , b (x))

E
[
∂1 pW (b (x) , b (·)) 1[b(x)>b(·)] + ∂1 pL (b (x) , b (·)) 1[b(x)<b(·)]

] , (2)

while Assumption 2(ii) implies that b is continuous and

v (x, x) − pW (b (x) , b (x)) + pL (b (x) , b (x)) = 0. (3)

Proof The first part is a consequence of Proposition 4, while the second part is a
consequence of Proposition 5 in the Appendix. 	


For the four previously mentioned formats, the function b that satisfies (1) is given
by:

(All-pay auction) b (x) =
x∫

0

v (α, α) dα (4)

(First-price auction) b (x) = 1

x

x∫

0

v (α, α) dα (5)

(Second-price auction) b (x) = v (x, x) (6)

(War of attrition) b (x) =
x∫

0

v (α, α)

1 − α
dα. (7)

It is easy to see that each of these functions is increasing if v is non-decreasing in
both arguments. Nevertheless, since we do not assume such monotonicity, this is not
necessarily true in our setting. This observation will be important below.

Recall that Assumption 2(ii) requires that ∂1 pW = ∂1 pL ≡0 and ∂2
(

pW − pL
)

> 0.
Thus, if v is continuous, as required by Proposition 2, then (3) always has a solution,
by the Intermediate Value Theorem. However, the existence of b does not imply its
monotonicity. Under Assumption 2(i), we might impose extra conditions to ensure the
existence of a solution to (2), i.e., the existence of b satisfying (1).

The next theorem provides an extra necessary weak monotonicity condition on v for
the existence of a monotonic equilibrium. It turns out that this condition is sufficient
to guarantee that an increasing bidding function b satisfying the payment expression
(1) is an equilibrium.

Theorem 1 (Necessary and Sufficient Conditions for Equilibrium) Suppose that v is
continuous. There exists a symmetric monotonic equilibrium without ties with positive
probability if and only if

(i) there exists a strictly increasing continuous function b that satisfies the payment
expression (1);
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(ii) for all (x, y) ∈ [0, 1] × [0, 1],

x∫

y

[v (x, α) − v (α, α)] dα � 0. (8)

In the affirmative case, the function b in item (i) is an equilibrium of A. If v is not
continuous, the above conditions are still sufficient and (ii) is necessary.

Proof Proposition 1 shows that (i) is necessary. The necessity of (ii) and the sufficiency
part are shown by Corollary 9 in the Appendix. 	


The condition (ii) of Theorem 1 is a weak monotonicity condition since (8) is
satisfied when [v (x, z) − v (z, z)] (x − z) ≥ 0, for all x, z ∈ [0, 1]. In particular,
x �→ v (x, z) increasing for all z ∈ [0, 1] is sufficient for (8).

The condition that b satisfying (1) is increasing is a condition on the primitives of the
problem and it is straightforward to check for specific auction formats. For instance,
in the case of a first-price auction we only have to check whether the function given
by (5) is increasing. The same is valid for all-pay auctions (4), second-price auctions
(6) and war of attrition (7). The verification is not straightforward only when (2) or
(3) have no close form solution.

Section 3.2 will treat cases where b satisfying (1) is not increasing.

3.1 An example

In Example 1 below, condition (8) is not satisfied and there is no monotonic equili-
brium. In the Appendix we reparametrize the types of Example 1 such that Theorem
1 is satisfied for the new types. The equilibrium bidding function is not monotonic in
the original types.

Example 1 Consider a symmetric first-price auction between two bidders with inde-
pendent and uniformly distributed types in [0, 1]. The payoff function is

v (x, y) = 9 (x + 1) (2y − x + 1)

8
.

It is easy to verify that b given by (5) is increasing, but the necessary condition (8)
is not satisfied, because

x∫

y

[v(x, α) − v(α, α)] dα = −3 (x − y)3

8
< 0

for x > y. By Theorem 1, there is no monotonic equilibrium. However, in the
Appendix we show that the following continuous and bell-shaped bidding function is
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an equilibrium:

b (x) =
{

3
(
12+3x−2x2

)

16 , if x ∈ [0, 1
2

]

3
(
13+x−2x2

)

16 , if x ∈ ( 1
2 , 1

]
.

Example 1 shows that sometimes only non-monotonic equilibria are possible. Thus,
natural questions arise: when only increasing equilibria exist and when equilibria exist
at all (possibly with non-monotonic strategies). The latter question will be tackled in
Sect. 5, while the former is treated in the sequel.

3.2 Monotonic equilibria and the all-pay auction tie-breaking rule

The traditional auction theory usually requires the monotonicity of v(x, y) in both
arguments. In what follows we make a weaker assumption:

Assumption 4 For all y ∈ S, x �→ v (x, y) is increasing.

For the results of this subsection, we assume that Assumption 4 also holds. Since
Assumption 4 trivially implies (8), the sufficiency for equilibrium existence in the
theorem that follows is an immediate consequence of Theorem 1.

Theorem 2 (Existence of Equilibrium) b is an equilibrium of A without ties (with
positive probability) if and only if b is increasing and satisfies the payment expres-
sion (1).

Example 1 does not satisfy Assumption 4 and has a non-monotonic equilibrium
obtained through a reparametrization of types. Under Assumption 4, such repametri-
zations do not work. On the other hand, it is important to emphasize that Assumption
4 does not imply that b is increasing, as the following example shows.

Example 2 (Example 1 of JSSZ. See also Jackson et al. 2004) Let v (x, y) = α+x+βy
be a utility function clearly satisfying Assumption 4. The first-price bidding function
given by (5)

b (x) = 1

x

x∫

0

v (z, z) dz = 1

x

[
αx + (1 + β) x2

2

]
= α + (1 + β) x

2

is increasing only if β > −1. Thus, there is an equilibrium without ties if and only if
β > −1, provided that α � max {0,− (1 + β) /2,−β} (otherwise, there would exist
negative values).

Example 2 is used by JSSZ to show that the equilibrium may fail to exist under the
standard tie-breaking rule. Building on this example, they propose an endogenously
defined tie-breaking rule to ensure equilibrium existence in general.

Let us consider instead the exogenous all-pay auction tie-breaking rule: if a tie
occurs, conduct an all-pay auction among the tying bidders. If another tie occurs,
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split the object evenly. The payments of the tying bidders are made according to the
second-stage bids. Our all-pay auction tie-breaking rule has the role of the second-price
auction tie-breaking rule used by Maskin and Riley (2000).

The next theorem shows that the all-pay auction tie-breaking rule always ensures
equilibrium existence for the auctions we are considering. It is also important to note
that the all-pay auction tie-breaking rule does not require an announcement of types.9

Theorem 3 (Equilibrium Existence with Ties) Assume that the all-pay auction tie-
breaking rule is adopted. If there is b that satisfies the payment expression (1), then
there exists a pure strategy equilibrium.

Proof This follows from the proof of Theorem 6. 	

The function b satisfying the statement of Theorem 3 is an equilibrium only if it

is increasing. If not, we can modify b into a non-decreasing bidding function with a
positive-probability set of tying types.

One important ingredient in the proof of Theorem 3 is that the bidding function of
an all-pay auction

b (x) =
x∫

0

v (α, α) dα

is always increasing (since v is positive by Assumption 1) and gives exactly the ex-
pected payment (1). Any other auction that has an increasing bidding equilibrium, like
the all-pay auction or war of attrition, can be used as the tie-breaking mechanism.

Example 2 (continuation) For β � −1, the equilibrium of Example 2 is given
by a constant bidding function b1 (x) = b̄ for the first-price auction, where b̄ ∈[
α + 1+β

2 , α
]
, and the bidding function

b2 (x) = αx + 1 + β

2
x2

for the second-phase auction (the all-pay auction that breaks the ties). 	


Tournaments

When b is not increasing, types are not “correctly” ordered and b fails to conveniently
reveal the bidder’s information. The tie-breaking rule plays exactly the role of sorting
the types. Thus, Theorem 3 shows that all-pay and war-of-attrition auctions are better-
revealing information mechanisms than first-price and second-price auctions.

9 This does not contradict the example given by Jackson et al. (2004) on the non-existence of equilibrium
with type-independent tie-breaking rule. Although related, the two concepts are distinct: our rule is type-
dependent in their sense because the final outcome depends on the players’ types through the outcome of
the second-stage auction. There is also uncertainty on the number of available objects in their modified
example, while we consider only standard auctions, that is, with a fixed number of objects.
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An important example of all-pay auctions is a tournament. Our previous theorem
thus gives a justification for the practice of tournaments. Consider, for instance, the
case of research contest among researchers who have a vector of unobserved characte-
ristics, such as technical capabilities, discipline, honesty, creativity, etc. In such cases
the object value is usually a very intricate function of these characteristics and tourna-
ments (all-pay auctions) can perform better the task of revealing this multidimensional
information. Thus, tournaments are likely in situations where the determination of the
best competitor is more complex.

Standard explanations for the use of tournaments in research contest also appeal
to the role of information. Taylor (1995, p. 872) says that: “Contracting for research
is often infeasible because research inputs are unobservable and research outcomes
cannot be verified by a court”. Our point is somewhat different but related to this. The
novelty is the comparison between auction mechanisms with respect to information
revelation.

That all-pay auctions are better mechanisms to reveal information is not completely
new. Fullerton and McAfee (1999) observe that the all-pay auction implies the exis-
tence of an increasing equilibrium in a setting where the second-price auction does
not. They analyze the auction for the right to compete in a tournament—see Sect. 4 for
further explanation. However, their auctions’ model is a particular case of ours. Thus,
Theorem 3 extends their basic intuition and shows that the property of better-revealing
information can be used to define an effective tie-breaking rule that does not require
an announcement of types.

Multiplicity of equilibria

An interesting corollary of Theorem 3 is the possibility of multiple equilibria when b
is not increasing, even under Assumption 4. There are two sources for this multiplicity.
The first is due to the all-pay auction tie-breaking rule per se, since many bid levels
can be chosen as the tying bid. This is shown in Fig. 1: any level b0 between z0 and
z1 can be chosen in the interval where b is decreasing and gives the same expected
payment and payoff to each bidder in the auction.

The second source is the fact that the tie-breaking rule is not unique in general. For
instance, for some specifications of v there are cases where b is decreasing with many
tie-breaking rules that ensure equilibrium existence (see Example 1 of JSSZ). However,
these tie-breaking rules may result in different expected revenues, whereas the all-pay
auction tie-breaking rule always preserves the Revenue Equivalence Theorem.

4 Non-monotonicities in multidimensional auctions

In JSSZ the action and type spaces are compact and metric and no monotonicity condi-
tion is imposed on the utility functions. Thus, the need for special tie-breaking rules
has to be understood in a more general setup. Nevertheless, theoretical generality is
not the only motivation. Even if we restrict ourselves to auctions, there are meaningful
and interesting situations where the usual monotonic assumptions are too restrictive.
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ak ck 

bk 

x0 x1 y0 y1 

z1 

z0 

Fig. 1 Non-monotonic bidding function

An interesting example occurs when the private information is not directly related to
the object value. For instance, the private information can be the financial constraints
of the bidder. In this case, the utility functions are not necessarily increasing with
the private information. Indeed, Zheng (2001) considers a case where the private
information is the financial capacity of the bidder and non-monotonic equilibria can
arise (see his Remark 3.2, p. 157).

The possibility of private information not directly related to value is, per se, a moti-
vation to consider models where the utility function is not necessarily monotonic. But,
even if it is directly related to the value, non-monotonicities can also arise. Consider
the following:

Example 3 (Job Market) Let us model the job market for a potential manager as
an auction between two competing firms where the object is the job contract. It is
natural to assume that managers have a multidimensional vector of characteristics,
m = (m1, . . . , mk). For simplicity, we consider only one-dimensional characteristics.
The qualification appraisal of the job candidate is private information of the competing
firms. Each firm has just one position with a specific characteristic requirement. In
general, for specific jobs firms have a desirable level of a specific characteristic. To
give a concrete example, if the characteristic is experience, an experienced candidate
can be rejected for a junior position.10 Therefore, let di be such a desirable level. Thus,
the utility of the firms in this auction is modeled as

10 Non-monotonicities seem to be a general feature of job markets. For instance, if the characteristic is the
ability to communicate and the position is a librarian, the desirable level of this ability is much lower than
if the position is for a salesman. An investment bank may want a sufficiently (but not exaggeratedly) high
level of risk-loving or audacity, while a family business may want a much lower level. Even efficiency or
qualification can be desirable on different levels. Sometimes, the rejection of a candidate is explained by
“over-qualification”.
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vi (ti , t−i ) = a
t1 + t2

2
− b

(
t1 + t2

2
− di

)2

where a is the weight of the managers’ characteristic and b > 0 is the penalty of the
distance from the desired level di . It is clear that this utility may be non-monotonic
in the types. For some values of the constants, it is also possible that all equilibria are
non-mononotic (a proof of this last claim is available upon request).

Another example where non-monotonicities arise is when the object is the right
to compete in a research tournament analyzed by Fullerton and McAfee (1999). The
private information is the cost of conducting research. The probability of winning the
tournament is decreasing with own cost, but increasing with the opponents’. It turns out
that the object value (the right to participate in the tournament) has the same feature.
Thus, the standard assumption that the bidders’ private informations are monotonic in
the same direction is not fulfilled.

Non-monotonicities also arise as a consequence of multidimensional and complex
information. For instance, in an oil-lease auction, the private information of bidders
includes estimates of the track size, oil quality, extraction cost, future international
prices, etc. These variables may compound in a non-monotonic fashion: small firms
have larger costs to operate big tracts compared to big firms, but the reverse is true
if the track size is small. Some of these variables are private values (such as the
extraction cost), but others (such as the field size or the international oil price) are
common values and the assessments of the opponents are likely to be important.
Putting all these together, it is not surprising that non-monotonicities arise in such a
multidimensional setting.11

We described cases where the value functions may be non-monotonic because of
multidimensionality of (independent) types. On the other hand, an example presented
by Reny and Zamir (2004) shows that multidimensionality and correlation of types
may lead to nonmonotonic equilibria, even if the value functions are monotonic. In
their example there are three bidders with bidimensional affiliated signals and mono-
tonic value functions, but all equilibria are non-monotonic. de Castro (2007) suggests
that general correlation of one-dimensional types may imply a small proportion of mo-
notonic equilibria. Also, de Frutos and Pechlivanos (2006) consider an auction with
independent bidimensional types, for which there exist no equilibrium in monotonic
strategies (see their Proposition 2).

Multidimensionality is also a source of non-monotonicities through a different chan-
nel. Athey and Levin (2001) and Ewerhart and Fieseler (2003) consider single-object
auctions where bids are multidimensional (although the information is unidimensio-
nal). Athey and Levin (2001) analyze the USA Forest Service timber auction where
bids are the unit prices of each specie of timber. Before the auction the Forest Service
(auctioneer) estimates the quantity of each specie in the tract and publicly announces
them. Thus, the auctioneer receives the multidimensional bid or the “supply” curve

11 In many cases, multidimensional information can be reduced to unidimensional types through a sufficient
statistic, as suggested by Milgrom and Weber (1982). Nevertheless, this approach does not justify the
monotonicity of the value function.

123



Non-monotoniticies and the all-pay auction tie-breaking rule 419

and obtains the bidders’ scores by multiplying the submitted unit prices by the an-
nounced quantities. The highest score bidder is the winner. Nevertheless, the actual
price paid by the winner is obtained by multiplying his unit price by the actual number
of removed trees, which is verified ex-post by the Forest Service. Thus, a bidder who
makes a better estimative of the number of trees of each specie and knows that the
initial estimate of the Forest Service is not accurate, may strategically manipulate his
offer. As a result, non-monotonic bids can arise.

A similar situation (see Ewerhart and Fieseler 2003) is a procurement auction for
a service with equipment supply such that bidders should put prices on materials and
work hours. Again, a scoring rule determines the winner through the seller’s initial
estimative (of materials and work hours). The final payment is made according to the
actual use of materials and work hours. Again, strategic manipulation of bids leads to
non-monotonic bidding functions.

All these examples show the importance of considering auctions with relaxed mo-
notonicity assumptions. In the next section we analyze the multidimensional type
space and bidding functions that may not be monotonic. For this setting we obtain
results analogous to those found in Sect. 3 for monotonic unidimensional auctions.
However, the characterization is not quite as complete as in the previous case, as we
explain below.

5 Extension to multidimensional auctions

In this section we discuss how the results of Sect. 3 can be extended to N players and
multidimensional type space S, which can be, for instance, a universal type space in
the sense of Mertens and Zamir (1985). We consider strategies b : S → R that induce
ties with zero probability but are not necessarily monotonic even if S has a natural
order, as in the case of S ⊂ R. This will allow us to characterize when this kind of
equilibria does not exist and ties are unavoidable.

Definition 1 A bounded measurable function b : S → R is regular if the c.d.f.
Fb (c) ≡ Pr {s ∈ S : b (s) ≤ c} is absolutely continuous and strictly increasing in its
support

[
b∗, b∗]. Let S denote the set of these regular functions.

The set S is formed by functions b that do not induce ties with positive probability
(because Fb is absolutely continuous) and that do not have gaps in the support of bids
(because Fb is increasing). Observe that S contains non-monotonic bidding functions.
As a first step, we will restrict attention to symmetric equilibria (b, . . . , b) ∈ SN . For
brevity and with some abuse of notation, we refer to such equilibria as b ∈ S.

As in Sect. 3, our purpose is to characterize conditions on v such that a pure
strategy equilibrium b ∈ S exists. We make some observations before the statement
of the result.

If b ∈ S is an equilibrium, then the c.d.f. of the opponents’ maximum bid, P̃ :
R+ → [0, 1] such that

P̃ (c) = Pr
{

t−i ∈ SN−1 : b
(
t j
) ≤ c,∀ j �= i

}
, (9)
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is increasing since b is regular. Define b̃ ≡ P̃−1 and P = P̃ ◦b, so that P : S → [0, 1]
is a reparametrization of the types in S satisfying

P (ti ) = Pr
{

t−i ∈ SN−1 : b
(
t j
)

� b (ti ) ,∀ j �= i
}

. (10)

Therefore, P associates to each type her winning probability given b ∈ S. As
we show in the Appendix, this reparametrization has some interesting properties. In
particular, b = b̃ ◦ P is such that the (increasing) function b̃ is an equilibrium bidding
function of a reduced auction with only two players, types P (s) ∈ [0, 1] and utility
given by

ṽ (x, y) ≡ E[v(ti , t−i )|P(ti ) = x, P(−i)(t−i ) = y], (11)

where P(−i)(t−i ) ≡ max j �=i P
(
t j
)
. Thus, we can consider instead the auction

Ã =
(

S̃, �̃, µ̃, Ñ , ṽ
)

, where S̃ = [0, 1], �̃ is the Borel σ -field, µ̃ is the Lebesgue

measure on [0, 1], Ñ = 2 and ṽ defined by (11) for a reparametrization P . The relation
between auctions Ã and A is explained by Proposition 10 in the Appendix.12

We have an analogous version of Theorem 1:

Theorem 4 There exists a symmetric equilibrium in regular strategies for A if and
only if there exists a reparametrization P : S → [0, 1] such that:

(i) there exists a strictly increasing and continuous function b̃ : [0, 1] → R satis-
fying the payment expression (1) for ṽ given by (11) using the reparametrization
P;

(ii) for all (x, y) ∈ [0, 1] × [0, 1] and s such that P (s) = x,

x∫

y

[
v̂ (s, α) − ṽ (α, α)

]
dα � 0, (12)

where v̂ (s, α) ≡ E[v(s, t−i )|P(−i)(t−i ) = α].

In the affirmative case, the function b̃ is an equilibrium of Ã.

The main difference between Theorem 1 and Theorem 4 is that the former does
not need any reparametrization. In fact, Theorem 1 is a special case of Theorem 4 for
S = [0, 1] and the identity reparametrization. Another difference is that, in condition
(ii) of Theorem 4 we use two different functions, v̂ and ṽ, whereas in Theorem 1 we
used only v. To understand this difference, the reader should note that the auction

12 The discussion that precedes Proposition 10 also clarifies this construction and shows that the repara-
metrization may be defined with no mention of b.

123



Non-monotoniticies and the all-pay auction tie-breaking rule 421

Ã satisfies the assumptions of Theorem 1, replacing v by ṽ. Thus, condition (ii) of
Theorem 1 for Ã is exactly the following:

x∫

y

[
ṽ (x, α) − ṽ (α, α)

]
dα � 0. (13)

In fact, this is sufficient for equilibrium existence for Ã but is not sufficient for equi-
librium existence for A. To ensure equilibrium existence for A, we need to ensure
that each type s satisfying P (s) = x , should not have an incentive for deviation.
Thus, we need to specify the above inequality for each of these s and not only for the
reparametrized type x . This explains our definition of v̂, which depends directly on s.
It turns out that (12) implies (13), but in general the converse does not hold.

Theorem 4 implies that if there exists an equilibrium we have an outcome-equivalent
auction Ã with just two players and types uniformly distributed on [0, 1]. In other
words, a multidimensional auction with an equilibrium can always be reduced to a
simple unidimensional auction preserving some of the properties of the original one.
This reinforces our interest in the auctions considered in Sect. 3: they are the outcome-
equivalent auction of the multi-player and multidimensional auction considered in this
section.

Note that Theorem 4 does not make trivial the task of verifying whether an equi-
librium exists for a given auction A, as Theorem 1 does for monotonic equilibria.
Indeed, given a reparametrization P : S → [0, 1], in general it is trivial to check
whether conditions (i) and (ii) are satisfied. The non-trivial part is exactly finding
which reparametrization works. Although we do not have a general method to find the
reparametrization, the following proposition might be useful:

Proposition 3 If A has a pure strategy equilibrium b ∈ S and there exists ∂b�(·, ·)
at (s, b (s)) for all s such that b (s) ∈ (b∗, b∗), then the reparametrization map P :
S → [0, 1] must satisfy the following property: for all s ∈ S such that P (s) = x, then

ṽ (x, x) = E[v(s, t−i )|P(−i)(t−i ) = x], (14)

where ṽ is defined by (11).13

This proposition can be used to compute explicitly the reparametrization, as the
following example illustrates.

Example 4 Consider a symmetric first-price auction between two bidders with in-
dependent and uniformly distributed types in [0, 1]. The utility function is given by
v(x, y) = x +α (x) y, where α (x) = 3 − 4x + 2x2. Thus, ∂xv(x, y) can be negative.

13 This condition is analogous to the one derived by Araujo and Moreira (2000) for screening problems
and by Araujo and Moreira (2003) for signaling games. In these papers, the violation of the single crossing
property leads to non-monotonicity.
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Although

b (x) = 1

x

x∫

0

v (α, α) dα = x
(
24 − 16x + 3x2

)

12

is increasing in [0, 1], condition (8)

x∫

y

[v(x, α) − v(α, α)] dα = (x − y)2

6

[
3 + 3x2 − 8y + 3y2 + x (−4 + 6y)

]
� 0

does not hold (for instance, take x = 0 and y = 1). Theorem 1 implies that there is no
monotonic equilibrium for A. Nevertheless, in the Appendix we illustrate how to use
Proposition 3 to construct a U-shaped symmetric equilibrium where ties occur with
zero probability.

Completely ordered auctions

Now we present the analogous version of Theorem 2 for this setting. First, we need a
generalization of Assumption 4:

Assumption 5 v (ti , t−i ) is such that if v (ti , t−i ) < v
(
t ′i , t−i

)
for some t−i , then

v
(
ti , t ′−i

)
< v

(
t ′i , t ′−i

)
for all t ′−i .

When S = [0, 1] , Assumption 5 is strictly weaker than Assumption 4, which is
already a generalization of the standard assumptions of the auction theory. However,
this does not mean that Assumption 5 is weak in multidimensional settings and, indeed,
it can be quite restrictive. To see this, consider the function v̄ (s) ≡ Et−i

[
v (s, t−i )

]

and the natural complete order in S induced by it: s′ � s ⇔ v̄
(
s′) ≥ v̄ (s). Under

Assumption 5, this order is equivalent to s′ �t−i s ⇔ v
(
s′, t−i

) ≥ v (s, t−i ) , for any
t−i . Thus, there is a unique way to define the reparametrization under Assumption 5:

P (ti ) ≡ Pr
{

t−i ∈ SN−1 : v̄
(
t j
)

< v̄ (ti ) , j �= i
}

. (15)

i.e., it is the winning probability with respect to that order.
However, as in the case of Assumption 4, Assumption 5 does not imply equilibrium

existence. Theorem 5 below (a generalization of Theorem 2) shows that b̃ satisfying
the payment expression (1) and being an increasing function is sufficient, under As-
sumption 5.

Theorem 5 (Necessary and Sufficient Condition for Equilibrium Existence) Consi-
der an auction A satisfying Assumptions 1, 2, 3 and 5. Let P be defined by (15) and
ṽ by (11) for this P. If ṽ is continuous, then there exists an equilibrium for A if and
only if there exists an increasing function b̃ that satisfies (1) with ṽ in the place of v.
In the affirmative case, the equilibrium of A is given by b = b̃ ◦ P. If there is a unique
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b̃ that satisfies such a property, the equilibrium of A is also unique in S. If ṽ is not
continuous, the condition is still sufficient.

As commented after Theorem 4 , multidimensional auctions with regular equilibria
can always be reduced (through reparametrizations) to unidimensional auctions. Thus,
to prove equilibrium existence for multidimensional auctions, it suffices to “reduce”
them to unidimensional auctions. This reduction is not an easy task in general, but it
is trivial under Assumption 5 because types can be ordered in a unique and natural
way.14

Under Assumption 5, the all-pay auction tie-breaking rule also works. We then have
a simple generalization of Theorem 3.

Theorem 6 (Equilibrium Existence with Ties) Consider an auction A where the all-
pay auction tie-breaking rule is adopted. If there is an absolutely continuous function
b̃ that satisfies (1), then there exists a pure strategy equilibrium.

6 Conclusion

Simon and Zame (1990) and JSSZ proposed a solution to the problem of equilibrium
existence for discontinuous games when the standard tie-breaking rule is not sufficient
to ensure it. Araujo and de Castro (2007) follow their idea and prove equilibrium
existence for single and double asymmetric auctions with interdependent values.

Our paper characterizes when special tie-breaking rules are really needed. We ac-
complish this task for the set of symmetric auctions with unidimensional types and
partially for a set of multidimensional symmetric auctions with weak monotonicity
assumption.

When a special tie-breaking rule is needed, we show that the all-pay auction tie-
breaking rule is sufficient to ensure equilibrium existence. This suggests that the all-pay
auction (and the war of attrition) are better mechanisms to reveal information than first-
and second-price auctions.

Our results suggest the possibility of completely defining the payoff of a disconti-
nuous game to ensure equilibrium existence, even when the standard definition does
not ensure this. In sum, this paper is a first step in the direction of finding general and
exogenously defined tie-breaking rules that do not require communication of private
information and guarantee equilibrium existence.

Acknowledgments We are grateful to the seminar participants at the NBER/NSF Decentralization Confe-
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14 The reduction-type dimension is not a novelty in auction theory. Studying efficient auctions, Dasgupta
and Maskin (2000) use a close condition to Assumption 5 and Jehiel et al. (1996) make such a reduction
for revenue maximization.
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Appendix

For convenience we follow the notation of Sect. 5, but first we analyze auctions between
two players with independent and uniformly distributed types in [0, 1] and satisfying
Assumptions 1 and 2. We allow for the existence of reserve prices that exclude bidders
with types in [0, x0) from the auction, that is, we relax Assumption 3 to Assumption
3’ below.

Let S̃ be the set of non-decreasing functions b̃ : [0, 1] → {bOU T } ∪ [bmin,+∞)

such that there exists x0 ∈ [0, 1] satisfying: b̃ ([0, x0)) = {bOU T } and b̃ is strictly
increasing in (x0, 1]. For b̃ ∈ S̃, let b∗ = inf{b̃ (x) � bmin : x ∈ [0, 1]} and
b∗ = sup{b̃ (x) � bmin : x ∈ [0, 1]}. Note that x0 = 0 when there is no exclusion.

The interim payoff of a bidder with type x who bids β � bmin and faces an opponent
following b̃ ∈ S̃ is

�̃
(

x, β, b̃
)

=
b̃−1(β)∫

0

[
ṽ (x, α) − pW

(
β, b̃ (α)

)]
dα −

1∫

b̃−1(β)

pL
(
β, b̃ (α)

)
dα,

(16)

where b̃−1 (β) = inf
{

x ∈ [0, 1] : b̃ (x) � β
}

. Let us also define

p̃
(
β, b̃

)
=

b̃−1(β)∫

0

pW
(
β, b̃ (α)

)
dα +

1∫

b̃−1(β)

pL
(
β, b̃ (α)

)
dα.

Assumption 2 requires that pL (bmin, b) = pL
(
bmin, b′) for all b and b′ and

pW (·, bOU T ) = pW (·, bmin) . Thus, α < x implies b̃ (α) � bmin and the expression

of p̃
(

bmin, b̃
)

can be simplified to

b̃−1(bmin)∫

0

pW (bmin, bmin) dα +
1∫

b̃−1(bmin)

pL (bmin, bmin) dα.

We assume:

Assumption 3’ There exists x0 ∈ [0, 1] such that, alternatively,

(i) x0 = 0 and

x∫

0

ṽ (x, α) dα �
x∫

0

pW (bmin, bmin) dα +
1∫

x

pL (bmin, bmin) dα

for all x ∈ [0, 1] or
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(ii) x0 > 0,

x0∫

0

ṽ (x0, α) dα =
x0∫

0

pW (bmin, bmin) dα +
1∫

x0

pL (bmin, bmin) dα

and x < x0 < y implies

x∫

0

ṽ (x, α) dα �
x0∫

0

ṽ (x0, α) dα �
y∫

0

ṽ (y, α) dα.

Note that Assumption 3’(i) corresponds to the original Assumption 3. In Assump-
tion 3’(ii), x0 is the type who bids the minimum bid bmin. This type necessarily has
zero expected payoff, because she must be indifferent to participating or not. The
inequalities in Assumption 3’(ii) are weak monotonicity conditions that imply that
types below x0 do not have the incentive to bid above bmin since the object value is
not greater than expected payments.

Proposition 4 Suppose that Assumption 2(i) holds. Let b̃ ∈ S̃ be an equilibrium
increasing in (x0, 1). Then, b̃ is continuous on (x0, 1). Moreover, if ṽ is continuous in
the second variable, then b̃ is differentiable in (x0, 1) and satisfies

b̃′ (x)=
ṽ (x, x) − pW

(
b̃ (x) , b̃ (x)

)
+ pL

(
b̃ (x) , b̃ (x)

)

Eα

[
∂1 pW

(
b̃ (x) , b̃ (α)

)
1[

b̃(x)>b̃(α)
]+∂1 pL

(
b̃ (x) , b̃ (α)

)
1[

b̃(x)<b̃(α)
]
] .

(17)

Proof The proof is an adaptation of the proof of Theorem 2 in Maskin and Riley
(1984). It is available upon request to the authors. 	

Proposition 5 Assume that ṽ is continuous and Assumption 2(ii) holds. Let b̃ ∈ S̃ be
an increasing equilibrium in (x0, 1). Then, b̃ is continuous in (x0, 1) and

ṽ (x, x) − pW
(

b̃ (x) , b̃ (x)
)

+ pL
(

b̃ (x) , b̃ (x)
)

= 0,∀x ∈ (x0, 1) . (18)

Proof The proof is based on the proof of Theorem 3 of Maskin and Riley (1984). It
is also available upon request to the authors. 	


We have the following:

Lemma 6 Assume that ṽ is continuous. Let b̃ ∈ S̃ be an increasing equilibrium in

(x0, 1). Then, �̃
(

x, ·, b̃
)

is differentiable in (b∗, b∗).
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Proof Under Assumption 2(i), Proposition 4 implies that b̃ is differentiable and, since
b̃ is increasing on (x0, 1), b̃−1 is differentiable on (b∗, b∗). We also have that ṽ is
continuous and pW and pL are differentiable. Thus, one can easily see from (16) that

∂β�̃
(

x, β, b̃
)

= ṽ
(

x, b̃−1 (β)
)

− pW (β, β) − pL (β, β)

−
b̃−1(β)∫

0

∂1 pW
(
β, b̃ (α)

)
·
[
b̃−1 (β)

]′
dα

−
1∫

b̃−1(β)

∂1 pL
(
β, b̃ (α)

)
·
[
b̃−1 (β)

]′
dα.

Under Assumption 2(ii), ∂1 pW (·, ·) = ∂1 pL (·, ·) = 0 and ∂β�̃
(

x, β, b̃
)

exists, with

∂β�̃
(

x, β, b̃
)

= ṽ
(

x, b̃−1 (β)
)

− pW (β, β) − pL (β, β) .

. 	

Now let us consider cases where b̃ is not monotonic since this is exactly the setting

of Theorem 3. To treat non-increasing b̃, we define the following:
Modified auction: Fix b̃ such that b̃ (x0) = bmin and b̃ (y) > bmin for y > x0. The

bidder bids a type y ∈ [0, 1]. If y < x0, the payment is zero. If y ≥ x0, the payment
is determined as if the bidder has submitted the bid b̃ (y). The bidder wins against
opponents who announce types below y and loses against those who announce types
above y. If there is a tie, the object is given to each bidder with probability 1/2.

Observe that if b̃ is increasing, the modified auction is the standard auction where
all bidders follow b̃. If b̃ is not increasing, the difference is that the winning events are
not determined by b̃ but by the announced type y. The rule of the modified auction
implies the following interim payoff:

�̂ (x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

∫ y
0

[
ṽ (x, α) − pW

(
b̃ (y) , b̃ (α)

)]
dα

− ∫ 1
y pL

(
b̃ (y) , b̃ (α)

)
dα, if y � x0

0 if y < x0.

We can simplify the above expression to

�̂ (x, y) =
{∫ y

0 ṽ (x, α) dα − p̂ (y) , if y � x0
0 if y < x0

(19)

where

p̂ (y) ≡
{∫ y

0 pW
(

b̃ (y) , b̃ (α)
)

dα + ∫ 1
y pL

(
b̃ (y) , b̃ (α)

)
dα, if y � x0

0, if y < x0.
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Proposition 7 (Payment Rule) Assume that ṽ is continuous. If truth-telling is an equi-
librium for the modified auction, then

p̂ (y) =
⎧
⎨

⎩

p̂ (x0) + ∫ y
x0

ṽ (α, α) dα, if y > x0∫ x0
0 ṽ (x0, α) dα, if y = x0

0, if y < x0.

(20)

Proof In the case of Assumption 2(i), b̃, pW and pL are differentiable on (x0, 1).
Thus, p̂ and �̂ are also differentiable. So, for every y ∈ (x0, 1), we have

p̂′ (y) = ∂y

⎧
⎨

⎩

y∫

0

ṽ (x, α) dα − �̂ (x, y)

⎫
⎬

⎭
= ṽ (x, y) − ∂y�̂ (x, y) .

The first-order condition for truth-telling optimality gives for x � x0, ∂2�̂ (x, y)

|y=x= 0, which implies that p̂′ (x) = ṽ (x, x). Thus,

p̂ (y) = p̂ (x0) +
y∫

x0

ṽ (α, α) dα

for y � x0. Now, let us turn to Assumption 2(ii). Since b̃ is only continuous, p̂ is not
necessarily differentiable. Nevertheless, if y � x0,

p̂ (y) =
y∫

0

pW
(

b̃ (y) , b̃ (α)
)

dα +
1∫

y

pL
(

b̃ (y) , b̃ (α)
)

dα

=
y∫

x0

[
pW

(
b̃ (y) , b̃ (α)

)
− pL

(
b̃ (y) , b̃ (α)

)]
dα + p̂ (x0)

=
y∫

x0

h
(

b̃ (α)
)

dα + p̂ (x0)

=
y∫

x0

ṽ (α, α) dα + p̂ (x0) ,

where h (z) ≡ pW (b, z) − pL
(
b′, z

)
does not depend on b and b′ by Assumption

2(ii). For y < x0, the payment is zero by the definition of the modified auction. For
y = x0, p̂ (y) is obtained from Assumption 3’. 	


Now we turn to the equilibrium existence. We will not assume that ṽ is continuous.
Instead, we assume only the validity of the payment expression (20).
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Proposition 8 (Equilibrium) Assume (20). Then, truth-telling is an equilibrium of the
modified auction if and only if

⎧
⎨

⎩

∫ x
y

[
ṽ (x, α) − ṽ (α, α)

]
dα � 0, if x, y � x0∫ x

x0

[
ṽ (x, α) − ṽ (α, α)

]
dα + ∫ x0

0

[
ṽ (x, α)−ṽ (x0, α)

]
dα � 0, if x � x0 > y

0 �
∫ y

x0

[
ṽ (x, α)−ṽ (α, α)

]
dα + ∫ x0

0

[
ṽ (x, α) − ṽ (x0, α)

]
dα if y � x0 > x .

(21)

Proof Given (20), the optimity condition for truth-telling, namely �̂ (x, x)−�̂ (x, y)

� 0, is equivalent to

x∫

0

ṽ (x, α) dα −
x∫

x0

ṽ (α, α) dα − p̂ (x0) −
y∫

0

ṽ (x, α) dα +
y∫

x0

ṽ (α, α) dα

+ p̂ (x0) =
x∫

y

[
ṽ (x, α) − ṽ (α, α)

]
dα � 0

if x, y � x0. The other cases are similar. 	

As previously stated, if b̃ is increasing, the modified auction is just the original

(unmodified) auction. Thus, we have:

Corollary 9 Assume that b̃ is increasing on (x0, 1) and implies (20). Then, b̃ is an
equilibrium of the auction Ã if and only if (21) holds.

Observe that Proposition 8 and Corollary 9 do not require ṽ to be continuous.

Definition of the reparametrized auction

Fix b ∈ S. Define the map Pb = P by (10), that is,

P (ti ) = Pr
{

t−i ∈ SN−1 : b
(
t j
)

� b (ti ) ,∀ j �= i
}

.

P associates each type to the winning probability given b ∈ S . From the symmetry,
P does not depend on i and P (ti ) � P

(
t j
)

if and only if b (ti ) � b
(
t j
)
. Obviously,

two players have the same probability of winning if and only if they choose the same
bid. Thus,

{
t−i ∈ SN−1 : b(−i) (t−i ) < b (ti )

}
=
{

t−i ∈ SN−1 : P(−i) (t−i ) < P (ti )
}

,

where P(−i) (t−i ) ≡ max j �=i Pb
(
t j
)
. The equality of these events and (10) imply that

P (ti ) = Pr
{

t−i ∈ SN−1 : P(−i) (t−i ) < P (ti )
}

.
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This can be used as a definition of an admissible reparametrization, even if the bidding
function b is not given. This and the fact that the range of P is [0, 1] imply

Pr
{

t−i ∈ SN−1 : P(−i) (t−i ) < c
}

= c, (22)

for all c ∈ [0, 1]. The above equation means that the distribution of P(−i) (t−i ) is
uniform on [0, 1].

The c.d.f. of the opponents’ maximum bid, P̃, is given by (9) and b̃ = P̃−1. Since
P (ti ) = P̃ (b (ti )), b (ti ) = P̃−1 ◦ P (ti ) = b̃ ◦ P (ti ). Moreover, b̃ strictly increasing
implies that

E
[
v (ti , ·) |ti = s, b(−i) (t−i ) = β

] = E
[
v (ti , ·) |ti = s, P(−i) (t−i ) = β

]
. (23)

If b : S → R is an equilibrium of A, �(ti , b (ti )) ≥ �(ti , c), for all c ∈ R, where
�(ti , c) is the interim payoff of A. Let us define

�̃ (x, c) ≡ E [�(ti , c) |P (ti ) = x] . (24)

The notation suggests that �̃ (x, c) is the interim payoff of Ã. This is exactly the
content of Proposition 10 below which justifies the interpretation of Ã as the outcome-
equivalent of A, as mentioned in Sect. 5. Since we can prove the equality of the
interim payoffs, there is no loss of generality to work with uniform distribution of
(reparametrized) types on [0, 1].

Proposition 10 Consider an auction A satisfying Assumptions 1, 2 and 3 and Ã
defined above for a given P : S → [0, 1]. Following the previous notation, we have:

(i)

�̃ (x, c) =
b̃−1(c)∫

0

[
ṽ (x, α) − pW

(
c, b̃ (α)

)]
dα −

1∫

b̃−1(c)

pL
(

c, b̃ (α)
)

dα.

(25)

(ii) Suppose that b̃ is strictly increasing and satisfies the payment expression (20).
If, for all (x, y) ∈ [0, 1] × [0, 1] and all s such that P (s) = x,

x∫

y

[
v̂ (s, α) − ṽ (α, α)

]
dα � 0, (26)

where v̂ (s, α) ≡ E[v(s, t−i )|P(−i)(t−i ) = y], then b̃ is an equilibrium of Ã
and b = b̃ ◦ P is an equilibrium of A.
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Proof Let us introduce the following notation:

�+ (ti , c) =
∫ [

v (ti , ·) − pW (c, b(−i) (·))
]

1[c>b(−i)(·)]� j �=iµ
(
dt j
)
,

�− (ti , c) =
∫

pL (c, b(−i) (·)) 1[c<b(−i)(·)]� j �=iµ
(
dt j
)
,

�̃+,− (φ, c) ≡ E
[
�

+,−
i (ti , c) |P (ti ) = φ

]
.

Let us start with the proof for �̃+
i and �+

i . Denote the conditional expectation by

gti ,c (α) ≡ E
[
v (ti , t−i ) − pW (c, b(−i) (t−i )

) |Pb
(−i) (t−i ) = α

]
. (27)

The event
[
c > b(−i) (t−i )

]
occurs if and only if

[
P̃b (c) > Pb

(−i) (t−i )
]

occurs. Then,

�+ (ti , c) =
∫

gti ,c
(

Pb
(−i) (t−i )

)
1[

P̃b(c)>Pb
(−i)(t−i )

]� j �=iµ
(
dt j
)
.

Now we appeal to Lehmann (1959), Lemma 2.2, p. 43. It says that if R is a transfor-
mation and µ∗ (B) = µ

(
R−1 (B)

)
, then

∫

R−1(B)

g [R (t)] µ (dt) =
∫

B

g (α) µ∗ (dα) .

In our case, R = Pb
(−i) and µ∗ ([0, c]) = µ∗ ([0, c)) = τ−i

((
Pb
)−1
(−i) ([0, c))

)
=

Pr{t−i ∈ SN−1 : Pb
(
t j
)

< c, ∀ j �= i} = c, by (22). So, µ∗ is exactly the Lebesgue
measure, and

�+ (ti , c) =
P̃b(c)∫

0

gti ,c (α) dα. (28)
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From this and the definition of �̃+, we have

�̃+ (φ, c) = E

⎡

⎢
⎣

P̃b(c)∫

0

gti ,c (α) dα|Pb (ti ) = φ

⎤

⎥
⎦

=
P̃b(c)∫

0

E
[
gti ,c (α) |Pb (ti ) = φ

]
dα

=
P̃b(c)∫

0

[
ṽ (φ, α) − pW

(
c, b̃ (α)

)]
dα,

where the second line comes from Fubbini’s Theorem and the last results from inde-
pendency and the definition of ṽ (φ, α) and gti ,c (α) [see (11) and (27)]. From the fact

that b̃ =
(

P̃b
)−1

, we can substitute P̃b to obtain

�̃+ (φ, c) =
b̃−1(c)∫

0

[
ṽ (φ, α) − pW

(
c, b̃ (α)

)]
dα. (29)

Now, we can repeat the same procedures for �− (φ, c) and obtain

�̃− (φ, c) =
1∫

b̃−1(c)

pL
(

c, b̃ (α)
)

dα. (30)

Adding up, we obtain the interim payoff of the indirect auction �̃ (φ, c) = �̃+ (φ, c)−
�̃− (φ, c).

For the second part, taking conditional expectations (26) implies that

x∫

y

[
ṽ (x, α) − ṽ (α, α)

]
dα � 0.

Thus, if b̃ is a strictly increasing function satisfying the payment expression (20),
Corollary 9 implies that b̃ is an equilibrium of Ã. Now, we prove that �(s, b (s)) ≥
�(s, c), for all c, where b = b̃ ◦ P . This inequality is equivalent to

∫

{s−i ∈S:b(s j)<b(s),∀ j}
v (s, s−i ) µ (ds−i ) − p (b (s)) �

∫

{s−i ∈S:b(s j)<c,∀ j}
×v (s, s−i ) µ (ds−i ) − p (c) ,
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or, if y is such that b̃ (y) = c,

∫

{z∈[0,1]:z<P(s)}
v̂ (s, z) dz − p

(
b̃ (P (s))

)
�

∫

{z∈[0,1]:z<y}

×v̂ (s, s−i ) µ (ds−i ) − p
(

b̃ (y)
)

.

Since b̃ satisfies (20), when P (s) = x the above inequality can be written as

x∫

y

[
v̂ (s, α) − ṽ (α, α)

]
dα � 0,

which is condition (26). 	

Proof of Proposition 3. We need the following:

Lemma 11 (Payoff Characterization) Consider an auction A satisfying Assumptions
1, 2 and 3. Fix b ∈ S. The bidder i’s payoff can be expressed by

�(ti , bi , b (·)) = �i (ti , b∗) +
∫

(b∗,bi )

∂bi �(ti , β, b (·))dβ,

where ∂bi �(ti , β, b (·)) exists for almost all β with

∂bi �(ti , β, b (·)) = E
[
−∂1 pW (β, b(−i) (t−i )

)
1[β>b(−i)(t−i )]

−∂1 pL (β, b(−i) (t−i )
)

1[β<b(−i)(t−i )]

]
+ E[v (ti , t−i )

−pW (β, β) + pL (β, β) |b(−i) (t−i ) = β] fb(−i) (β) , a.e.

If b ∈ S, it defines a reparametrization Pb by (10). The bid b (ti ) = β is optimal
for bidder ti against the strategy b (·) of the opponents. Thus, ∂b�(s, b (s)) = 0 and
Lemma 11 imply that

E
[
v (ti , ·) |ti = s, b(−i) (t−i ) = β

] = pW (β, β) − pL (β, β)

−
Et−i

[
∂bi pW 1[bi >b(−i)] + ∂bi pL1[bi <b(−i)]

]

fb(−i) (β)
.

Observe that the right-hand side does not depend on s (it depends on it only through
the optimum bid β = b (s)). Thus, the left-hand side has to be the same for all s that
make the same bid in equilibrium, which implies (14).

Through the proof of Theorem 5, we will make successive use of the following:
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Lemma 12 For any σ−field 	 on SN−1, we have

∃t−i : v
(
s′, t−i

)
> v (s, t−i ) ⇔

∀t−i : v
(
s′, t−i

)
> v (s, t−i ) ⇔ E

[
v (ti , t−i ) |ti = s′, 	

]

> E
[
v (ti , t−i ) |ti = s, 	

]
, a.e.

Proof Assumption 5 gives the first equivalence. By Assumption 3, if v
(
s′, t−i

)
>

v (s, t−i ), ∀t−i , then, for any 	 , E
[
v
(
s′, t−i

)− v (s, t−i ) |	] > 0 almost surely.15

On the other hand, E[v (ti , t−i ) | ti = s′, 	] > E[v (ti , t−i ) | ti = s, 	] a.e. implies
that ∃t−i such that v

(
s′, t−i

)
> v (s, t−i ). 	


Proof of Theorem 5 Equilibrium Existence Let P be defined by (15), x, y ∈ [0, 1]
and s ∈ S be such that P (s) = x . We claim that Assumption 5 implies

x∫

y

[
v̂ (s, α) − ṽ (α, α)

]
dα � 0.

Indeed, if x > y, for all ti and t ′i such that P
(
t ′i
) = x and P (ti ) = y, we have

v
(
t ′i , t−i

)
> v (ti , t−i ) for all t−i , by Assumption 5. Then, for all z ∈ [0, 1] ,

v̂ (s, z) ≡ E
[
v (ti , t−i ) |P(−i) (t−i ) = z

]

> E
[
v (ti , t−i ) |P (ti ) = y, P(−i) (t−i ) = z

] = ṽ (y, z) .

Then, if y < α < x = P (s), v̂ (s, α) − ṽ (α, α) > 0 and

x∫

y

[
v̂ (s, α) − ṽ (α, α)

]
dα � 0.

If P (s) = x < α < y, we have v̂ (s, α) − ṽ (α, α) < 0 so that the same inequality is
satisfied and the claim is proved.

By Theorem 4, b̃ is an equilibrium of Ã and b = b̃ ◦ P is an equilibrium of A.
Now assume that ṽ is continuous. The sufficiency was already established. We now

prove the necessity.
Let b ∈ S be an equilibrium of A, Pb [given by (10)] be its associate reparametri-

zation and b̃ = b ◦ (Pb
)−1

. By Proposition 10, b̃ is an equilibrium of Ã.
Define V (x) = E

[
v (ti , t−i ) |Pb (ti ) = x

]
. Then, we have:

Lemma 13 x > y ⇒ V (x) ≥ V (y) .

Proof By absurd, suppose that there exist x and y, x > y, such that V (x) < V (y).
First, we claim that for all ti and t ′i such that Pb (ti ) = x and Pb

(
t ′i
) = y, we have

v (ti , t−i ) < v
(
t ′i , t−i

)
for all t−i . Otherwise, v (ti , t−i ) � v

(
t ′i , t−i

)
for some t−i and,

15 See, for instance, Kallenberg (2002), Theorem 6.1, p. 104.
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by Assumption 5, v
(
ti , t ′−i

)
� v

(
t ′i , t ′−i

)
for all t ′−i . Then, Lemma 12 would imply

that V (x) = E
[
v (ti , t−i ) |Pb (ti ) = x

]
� E

[
v (ti , t−i ) |Pb (ti ) = y

] = V (y), a
contradiction. Thus, the claim is proved.

This claim and Lemma 12 imply that

ṽ (x, z) ≡ E
[
v (ti , t−i ) |Pb (ti ) = x, Pb

(−i) (t−i ) = z
]

< E
[
v (ti , t−i ) |Pb (ti ) = y, Pb

(−i) (t−i ) = z
]

= ṽ (y, z) ,

for all z ∈ [0, 1], a.e. Thus,

x∫

y

[
ṽ (x, α) − ṽ (y, α)

]
dα < 0.

The fact that b̃ is an equilibrium of Ã gives

x∫

y

[
ṽ (y, α) − ṽ (α, α)

]
dα � 0.

Summing up these two integrals, we obtain

x∫

y

[
ṽ (x, α) − ṽ (α, α)

]
dα < 0,

which contradicts Corollary 9. This contradiction establishes the result. 	

In fact, V (x) is strictly increasing:

Lemma 14 x > y ⇒ V (x) > V (y) .

Proof Suppose that there exist x > y such that V (x) = V (y). Then, the monotonicity
of V (by the previous lemma) gives

∀φ ∈ [y, x] , V (φ) = V (x) = V (y) . (31)

Let S′ =
{

s ∈ S : b̃ (y) � b (s) < b̃ (x)
}

. From (10), for all s ∈ S′, Pb (s) ∈
[y, x]. Then, (31) implies that V (s) = V (x), for s ∈ S′. Assumption 5 requires that

µ
(
S′) = 0. Observe that S′ = A\B, where A ≡

{
s ∈ S : b (s) < b̃ (x)

}
and B =

{
s ∈ S : b (s) < b̃ (y)

}
. Then, µ (A) = µ (B). However, from the definition of b̃ as

the inverse of P̃b, we have:
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0 < x − y = P̃b
(

b̃ (x)
)

− P̃b
(

b̃ (y)
)

= (µ (A))N−1 − (µ (B))N−1 ,

which is a contradiction. 	

Thus, we proved that x = Pb

(
s′) > Pb (s) = y implies v̄

(
s′) = V (x) > V (y) =

v̄ (s) and Pb
(
s′) = Pb (s) implies v̄

(
s′) = v̄ (s). In other words, Pb

(
s′) � Pb (s) if

and only if v̄
(
s′) � v̄ (s) which allows us to conclude that

Pb (ti ) = Pr
{

t−i ∈ T−i = SN−1 : v̄
(
t j
)

< v̄ (ti ) , j �= i
}

,

as defined in (15). In other words, the reparametrization is unique.
Uniqueness In the previous step (necessity), we showed that the reparametrization

is unique, which implies that ṽ is unique. If ṽ is continuous, Proposition 1 says that any
equilibrium b̃ satisfies the payment expression (1). If there is only one b̃ that satisfies
such an expression, then the equilibrium of Ã is unique and, hence, of A.

Proof of Theorem 6 If b̃ is strictly increasing, then b = b̃ ◦ P is an equilibrium of A,
by Theorem 5. Thus, we need to show that an equilibrium exists if b̃ is not increasing.
In the first part of the proof of Theorem 5, we established that Assumption 5 implies
that

ṽ (x, z) > ṽ (y, z) ,∀z ∈ [0, 1] . (32)

whenever x > y. It was also shown that

x∫

y

[
ṽ (x, α) − ṽ (α, α)

]
dα � 0 (33)

and that �̃ (P (ti ) , c) = �(ti , c) for all ti and c, when the reparametrization is given
by (15).

Let us define b (x) = supα∈[0,x] b̃ (α). As we discussed after the statement of
Theorem 3, this is just one of the possible specifications for the equilibrium bidding
function. The only exception is when the tie includes the highest bidder. In such a case
it is mandatory that the bid of tying bidders follows the above definition. The reason
will become clear in the sequel.

Remember that b̃ is absolutely continuous. Then, there is an enumerable set of
intervals [ak, ck] where b (x) is constant. Let bk ≡ b (x) for x ∈ [ak, ck] (see Fig. 2).
Therefore, there is a tie among types in [ak, ck] for the bidding function b. Let bk be
the specified bid for types in [ak, ck], that is, b ([ak, ck]) = {bk}. The tie is solved by
an all-pay auction among tying bidders.

The only information that bidders have for the second auction is that there is a tie
in bk , that is, P(−i) (t−i ) ∈ [ak, ck].
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x

bi
d 

b(
x)

a1 c1 a2 a3 c3 c2 

b1 

b2 

b3 

Fig. 2 Definition of b (x)

By the definition of P in (15), P(−i) satisfies

Pr
({

t−i ∈ SN−1 : P(−i) (t−i ) < x
}

|P(−i) (t−i ) ∈ [ak, ck]
)

= x − ak

ck − ak
.

Thus, in the tie-breaking auction the (direct) type ti of bidder i is competing against
players t j in the set {s ∈ S : P (s) ∈ [ak, ck]} and the equilibrium is to bid the
increasing function

b̃2 (x) = 1

ck − ak

x∫

ak

ṽ (α, α) dα.

Indeed, from (33), we have that

1

ck − ak

⎡

⎣
x∫

ak

ṽ (x, α) dα −
x∫

ak

ṽ (α, α) dα

⎤

⎦

� 1

ck − ak

⎡

⎣
y∫

ak

ṽ (x, α) dα −
y∫

ak

ṽ (α, α) dα

⎤

⎦

for any x, y ∈ [ak, ck].
In the whole auction, the bidder with indirect type x ∈ [ak, ck] who follows the

strategy b (x) and b̃2(x) in the case of a tie has the expected payoff
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ak∫

0

[
ṽ (x, α) − ṽ (α, α)

]
dα + (ck − ak)

⎧
⎨

⎩
1

ck − ak

x∫

ak

[
ṽ (x, α) − ṽ (α, α)

]
dα

⎫
⎬

⎭

=
x∫

0

[
ṽ (x, α) − ṽ (α, α)

]
dα.

We claim that deviation in the second auction is suboptimal. Deviating from b but
bidding in the range of b, that is, bidding b (y) �= b (x), yields

�̃i
(
x, b (y)

) =
y∫

0

[
ṽ (x, α) − ṽ (α, α)

]
dα,

when b (y) is not a bid with positive probability. This is lower than or equal to
�̃i
(
x, b (x)

)
by (33). If b (y) is a bid with positive probability, the second stage

will again be an all-pay auction and the bidder cannot improve his payoff, again by
(33).

If x bids β < infx∈[0,1] b (x), then his payoff will be

1∫

0

pL (β, b (α)
)

dα � 0,

because pL � 0. Therefore, this deviation cannot be profitable as well.
Finally, if x bids β > supx∈[0,1] b (x) = b̃ (x)� b̃ (1), for some x . Since ∂1 pW (·) �

0, pW
(
β, b (z)

)
� pW

(
b̃ (1) , b (z)

)
and

1∫

0

pW (β, b (α)
)

�
1∫

0

pW
(

b̃ (1) , b (α)
)

dα =
1∫

0

ṽ (α, α) dα.

Then, the payoff of the bidder with type x who bids β is

1∫

0

[
ṽ (x, α) − pW (β, b (α)

)]
dα �

1∫

0

[
ṽ (x, α) − ṽ (α, α)

]
dα

=
x∫

0

[
ṽ (x, α) − ṽ (α, α)

]
dα +

1∫

x

[
ṽ (x, α) − ṽ (α, α)

]
dα

<

x∫

0

[
ṽ (x, α) − ṽ (α, α)

]
dα,
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where the last inequality comes from (32). Thus, deviation to β is unprofitable and b̃
is an equilibrium of the auction Ã.

From the fact that �̃ (P (ti ) , c) = �(ti , c) for all ti and c, proved in Theorem 5,
b = b̃ ◦ P is an equilibrium of A. 	

Example 1 (proofs)

Suppose that a bidder bids β and the opponents follow

b (s) =
{

3
(
12+3s−2s2

)

16 , if s ∈ [0, 1
2

]

3
(
13+s−2s2

)

16 , if s ∈ ( 1
2 , 1

]
.

Let g1 (β) ∈ [0, 1
2

]
and g2 (β) ∈ ( 1

2 , 1
]

denote the types that bid β according to b (·).
It is not difficult to see that g1 (β) + g2 (β) = 1. The payoff is then

�(x, b (s)) =
g1(β)∫

0

[v (x, y) − β] dy +
1∫

g2(β)

[v (x, y) − β] dy

=
(

g1 (β) + 1 − g2 (β)
)[9 (x + 1)

8
+ 9

(
1 − x2

)

8
− β

]

.

If we denote g1 (β) = s such that g2 (β) = 1 − s, we have the following first-order
condition on s :

∂s� = 2

[
9
(
2 + x − x2

)

8
− 3

(
12 + 3s − 2s2

)

16

]

− 2s
3 (3 − 4s)

16
= 0,

that is,
9
(
2+x−x2

)

4 = 9
(
2+s−s2

)

4 . The second-order derivative is

∂2
ss� = −9 + 12s − 9 + 12s

8
< 0,

because s < 1/2. This concludes the proof of the optimality of b (·).
Example 4 (proofs) We provide conditions on α(x), satisfied by the function specified
in Example 4, such that there is a U-shaped equilibrium. In this case, there are two
pooling types, that is, types which bid the same for each equilibrium bid. Thus, the
pooling type of t , ϕ = ϕ(t), in a symmetric equilibrium b ∈ S satisfies the condition
of Proposition 3:

t + α(t)E[t2|b(t) = b(t2)] = ϕ + α(ϕ)E[t2|b(t) = b(t2)].

Since E[t2|b(t) = b(t2)] = (t +ϕ)/2 and because of the symmetry and the uniform
distribution, then ϕ is the implicit solution of

(t + ϕ)(α(ϕ) − α(t)) = 2(t − ϕ).
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The function α(x) defined in Example 4 satisfies the conditions of the following
claim which establishes the existence of a symmetric U-shaped equilibrium.

Claim Suppose that: (i) α is differentiable, decreasing and convex such that α(0) −
α(1) = 2 and (ii) α′ is convex and α′(x) ≥ −1/x, for all x ∈ (0, 1]. Then there exists
a U-shaped symmetric equilibrium.

Proof Define the following reparametrization:

P(t) = ϕ(t) − t

2
.

It is easy to see that P is decreasing. Define

ṽ(x, y) ≡ E [v(t1, t2)|P (t1) = x, P (t2) = y]

= x + ϕ (x)

2
+ α(x) + α (ϕ (x))

2

y + ϕ (y)

2
.

The specified bidding function is an equilibrium if (x − y) [̃v(x, y) − ṽ(y, y)] � 0.
Suppose that x > y. The last inequality divided by (y + ϕ(y))/2 is

x + ϕ(x)

y + ϕ(y)
+ α(x) + α(ϕ(x))

2
� 1 + α(y) + α(ϕ(y))

2
. (34)

For each w ∈ (0, 1], define gw(z) = z
w

+ α(z), for z ∈ [w, 1]. It is easy to see that

g is non-decreasing because g′
w(z) = 1

w
+α′(z) � 1

w
− 1

z � 0. Fix y and w = y+ϕ(y)
2 .

Since α is convex and x � y,

x + ϕ(x)

y + ϕ(y)
+ α(x) + α(ϕ(x))

2
� x + ϕ(x)

y + ϕ(y)
+ α

(
x + ϕ (x)

2

)

= gw

(
x + ϕ (x)

2

)
,

if x + ϕ (x) � y + ϕ (y). Then, ( 34) is true if t + ϕ(t) is non-increasing on t or,
equivalently, ϕ′(t) ≤ −1.

The implicit derivative of ϕ with respect to t is

ϕ′ (t) = α(t) − α(ϕ (t)) + (t + ϕ (t))α′(t) + 2

α(ϕ (t)) − α(t) + (t + ϕ (t))α′(ϕ) + 2
.

Without loss of generality (because ϕ ◦ϕ(t) = t), we can assume that the denominator
is negative and ϕ > t . Thus,

ϕ′(t) � −1 ⇔ α′(t) + α′(ϕ)

2
� α(ϕ) − α(t)

ϕ − t
.
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Since α′ is a convex function, the above inequality holds if

α′
(

t + ϕ

2

)
≥ α(ϕ) − α(t)

ϕ − t
= − 2

t + ϕ

where the last equality comes from the implicit definition of ϕ. However, this inequality
is true because α′(x) ≥ −1/x, for all x ∈ (0, 1]. 	
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