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Abstract

This paper proposes a new general class of strategic games and develops an associated new existence 
result for pure-strategy Nash equilibrium. For a two-player game with scalar and compact action sets, exis-
tence entails that one reaction curve be increasing and continuous and the other quasi-increasing (i.e., not 
have any downward jumps). The latter property amounts to strategic quasi-complementarities. The paper 
provides a number of ancillary results of independent interest, including sufficient conditions for a quasi-
increasing argmax (or non-monotone comparative statics), and new sufficient conditions for uniqueness of 
fixed points. For maximal accessibility of the results, the main results are presented in a Euclidean setting. 
We argue that all these results have broad and elementary applicability by providing simple illustrations 
with commonly used models in economic dynamics and industrial organization.
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1. Introduction

In the course of developing new game-theoretic models of economic behavior, the existence 
of Nash equilibrium often emerges as the first critical test to discriminate between alternative 
candidate models. In most economic settings, a long-standing preference for pure-strategy Nash 
equilibrium (henceforth, PSNE) still constitutes the dominant norm. The primary requirement 
of existence applies to any investigation, whenever the analysis covers general functional forms. 
Existence of PSNE is then virtually always obtained via the application of a fixed point theorem, 
following a long-standing practice going back to Nash (1951). While Nash considered mixed-
strategy equilibrium for finite games, Rosen (1965) extended his basic insight to the case of 
PSNE and Euclidean action spaces. In this traditional approach, existence follows from Brouw-
er’s (or Kakutani’s) fixed point theorem, and is thus predicated on the best response functions 
being continuous on compact convex action spaces. Stepping back to payoff functions, the rele-
vant properties are joint continuity in the strategies and quasi-concavity in own action. We refer 
to this method as the topological approach.

A new approach to the existence of PSNE, which relies on the best response mapping being 
increasing and on the action spaces being complete lattices, was proposed by Topkis (1978,
1979). Based instead on Tarski’s fixed point theorem for monotone functions (Tarski, 1955), 
this approach of an order-theoretic nature has given rise to the class of supermodular games. In 
addition to the existence of PSNE, this approach has also proven useful for the characterization of 
equilibrium learning and comparative statics properties (Vives, 1990, and Milgrom and Roberts, 
1990)1.

The purpose of this paper is to develop a new class of games that possess PSNEs, which is 
not covered by either of the two paradigms. The result pertains to two-player games with scalar 
action sets. This result imposes different requirements on the two players’ reaction curves. For 
one player, this curve must be both continuous and increasing, while for the other player all that 
is needed is that his reaction curve not possess any downward jump discontinuities (see Fig. 1).

We follow a lesser known part of Tarski’s (1955) classical paper, and call quasi-increasing 
functions that cannot have downward jumps.2 Tarski proved an intersection point theorem be-
tween a quasi-increasing function and a quasi-decreasing function whenever these have the same 
domains and ranges (both complete chains) and the former starts above the latter and ends below 
it.3

An important special case obtains when one takes the quasi-decreasing function to be the iden-
tity function, in which case the result boils down to a fixed point theorem for quasi-increasing 
functions. Interestingly, variants of this fixed point theorem have been rediscovered in the eco-
nomics literature and applied a number of times to establish existence of symmetric PSNE in 
symmetric oligopoly settings. As a result, the existence of a symmetric PSNE then follows at 
once from the existence of a fixed point for the common reaction curve of all the players.4

1 For submodular games, see for instance Acemoglu and Jensen (2009) and Roy and Sabarwal (2012).
2 Tarski’s definition of quasi-increasing is given in purely lattice-theoretic terms for functions mapping chains into 

chains. The simpler version for real functions, the focus of this paper, follows Milgrom and Roberts (1994).
3 A quasi-decreasing function is defined by the dual property of not possessing any upward jump discontinuities. See 

Section 2 for a more detailed explanation and illustration of Tarski’s intersection point theorem.
4 See McManus (1962, 1964), Roberts and Sonnenschein (1976), Reinganum (1982), Vives (1990), Milgrom and 

Roberts (1994), Amir (1996a), Amir and Lambson (2000), and Hoernig (2003), among others. For a textbook treatment 
with an overview of this literature, see Vives (1999).
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Fig. 1. Illustration of our fixed point theorem: (x̄, ȳ) = (g(ȳ), f (x̄)).

While the economic applications of this result have so far all shared the critical property 
that the underlying game is symmetric, the starting point for the present paper is the idea that 
the technique may be used to establish existence of PSNE for asymmetric two-player games. 
To this end, it suffices to apply this fixed point theorem to the composition of the two reaction 
curves, one of which is a quasi-increasing function and the other an increasing and continuous 
function. The key observation is that the composition of two such functions is itself necessarily 
quasi-increasing.

While this structure makes it clear that the underlying class of games overlaps with each of 
the two existing classes of games known to possess PSNEs, it is easy to see that the new class of 
games is not nested with either of the existing two. We shall have more to say about this below.

It is instructive to provide some basic insight into the restrictiveness of the needed assumptions 
for this new existence result by comparing them to those used for supermodular games. The 
comparison yields a mixed outcome. On the one hand, for one player, the present framework 
requires continuity in addition to upward monotonicity of the reaction curve. On the other hand, 
for the other player, the requirement of upward monotonicity has been relaxed to that of just 
quasi-monotonicity. Amending the standard terms to refer to these properties in the economics 
literature in a suitable way, one may designate such games as being characterized by continuous 
strategic complementarity for one player and limited strategic substitutability for the other player, 
or what we may call strategic quasi-complementarity. While the former property may be seen as 
combining the requirements from each of two known approaches to existence of PSNE so far, 
i.e., continuity and monotonicity, no such connection holds for the property of quasi-increasing 
reaction curves. Recall that the latter rules out only downward jump discontinuities.

Despite the partial link with the topological approach just alluded to, we stress at the outset 
that the present approach is lattice-theoretic. One key consequence is that the result admits an 
order dual for games where the reaction function of one player is continuous and decreasing and 
that of the other player is quasi-decreasing. While the two dual results are formally equivalent, 
they tend to apply to quite different classes of economic models (as seen in applications below).

In delineating the proper scope for these new existence results, it is important to point out 
two basic shortcomings. The first is that the players’ strategy spaces must be totally ordered (i.e., 
chains), a limitation that stems directly from the use of Tarski’s intersection point theorem, which 
is not valid in partially ordered sets. The second is that this basic existence result does not extend 
at the same level of generality to games with any number of players. This is left for future work.

While the existence results constitute the main goal of the paper, the underlying analysis 
requires a number of ancillary results that are of significant independent interest. Some of these 



R. Amir, L. De Castro / Journal of Economic Theory 172 (2017) 220–246 223
are crucially needed as building blocks to construct the basic machinery for the existence result, 
while others are useful supplementary results. The first of the building blocks is to derive some 
simple lemmas that capture the essential features of quasi-monotonic functions, and provide a 
basic calculus for useful operations involving them, as well as sufficient conditions that isolate a 
useful subclass of quasi-monotonic functions (upper or lower Lipschitz functions) for actual use 
in our analysis.

The second block consists of sufficient conditions on a parametric optimization problem to 
yield a quasi-monotonic argmax correspondence. To this end, we follow some existing work 
(e.g. Granot and Veinott, 1985 and Curtat, 1996) and introduce parameter-dependent changes of 
variable that allow the desired conclusion to obtain in much the same way as the usual conclusion 
of monotonicity of argmax’s. This forms a basic foundation for non-monotone (quantitative) 
comparative statics.

In line with the theory of supermodular games, our existence results do not address uniqueness 
of PSNE. Nonetheless, some key ancillary results provide novel sufficient conditions for the 
uniqueness of PSNE. While the underlying conditions are related in one form or another to a 
contraction property in the reaction curves, the latter is required to hold only in a local sense. As 
such, the results are more reminiscent of uniqueness results in equilibrium theory based on degree 
theory (e.g., Dierker, 1972). In addition to applying to some settings covered by the existence 
results given here, these uniqueness results could also apply more broadly to other classes of 
games.

In particular, the uniqueness results apply to symmetric PSNE of symmetric games, for which 
we also state the basic existence result that forms the general version of the particular cases that 
have appeared in specific oligopoly contexts (e.g., Roberts and Sonnenschein, 1976 and Amir and 
Lambson, 2000). The present paper may thus be seen as unifying this older oligopoly literature.

Last but not least, as with any advance in abstract theory, a crucial test is: How broad is the 
scope of application, and how accessible is the tool kit developed to facilitate its use? In order to 
make a compelling case that both questions can be answered along very positive lines, we provide 
four detailed examples of well known economic models for which new results are obtained via 
the direct use of our results. Furthermore, as we provide all the concomitant details of the various 
steps needed to apply the results for the different models, the reader can appreciate their practical 
value.

While a large variety of applications may be given, it suffices to develop the following se-
lection of models in some detail: A model of growth with increasing returns, a hybrid duopoly 
model of price-quantity competition with differentiated products, and a model of Bertrand com-
petition with increasing returns for one firm. The latter model does not lend itself to existing 
arguments for existence of PSNE. In addition, the Bertrand model is also used as a vehicle to 
illustrate some of the ancillary results of the paper, in particular how to obtain a quasi-monotone 
argmax and uniqueness of PSNE. Thus it is worth stressing that the last two applications develop 
a number of results that are of some independent interest for their respective literature strands.

The organization of the paper is as follows. We begin in Section 2 with a full exposition of the 
definitions of the new notions, their main properties, and a derivation of the basic background 
results for real action sets. In Section 3, the new results are stated in the form of existence results 
for PSNE in games, along with the associated uniqueness results. Section 4 contains a detailed 
discussion of some economic applications of the new theory. Section 5 provides a brief conclu-
sion.
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2. Quasi-monotone functions on R

In the framework of real parameter and decision spaces, this section lays out all the funda-
mental notions and basic results that are needed as preliminaries for our new approach to the 
existence of pure-strategy Nash equilibrium (henceforth PSNE) for games with scalar real action 
spaces.

The present theory is based on the properties of quasi-increasing and quasi-decreasing func-
tions, introduced by Tarski (1955) for general totally ordered lattices (chains). We begin in Sec-
tion 2.1 with the basic definitions and properties of quasi-monotone functions in one-dimensional 
Euclidean space along with some basic practical tests for this property. We provide useful 
sufficient conditions for quasi-increasingness in section 2.2, before moving to the analysis of 
parametric optimization problems that yield quasi-monotonic functions as optimal solutions in 
Section 2.3. Then Section 2.4 describes our fixed point results, which are used in section 3 for 
equilibrium existence in games.

2.1. Definition and basic properties

In the same article that contains his well known fixed point theorem for increasing maps on 
a complete lattice, Tarski (1955) also proved an intersection point theorem (his Theorem 3) on 
chains. To present this much less known result for the special case of real-valued functions on a 
real domain, the main new concepts needed are now introduced.

Definition 1. Let X, Y ⊂R. A function f : X → Y is quasi-increasing if for every x ∈ X,

lim sup
y↑x

f (y) � f (x) � lim inf
y↓x

f (y). (1)

Likewise f is quasi-decreasing if −f is quasi-increasing, or lim infy↑x f (y) � f (x) �
lim supy↓x f (y). A function is quasi-monotone if it is either quasi-increasing or quasi-decreasing.

Milgrom and Roberts (1994) refer instead to functions satisfying (1) as “continuous but for 
upward jumps.” Indeed, one crucial implication of (1) is that any jump discontinuity for a quasi-
increasing function must be upward (downward for quasi-decreasing functions).

From the above definitions, the following facts follow easily.5 Since properties related to 
quasi-decreasing functions can be obtained directly from the analogs for quasi-increasing func-
tions via standard duality arguments, we shall limit most of our discussion to the latter.

Proposition 2. Let λ � 0, X ⊂R and f, g : X → R be two functions. The following hold:

(i) f is continuous if and only if it is both quasi-increasing and quasi-decreasing.
(ii) If f is increasing, then f is quasi-increasing.

(iii) If f is quasi-increasing and g is continuous and increasing, g ◦ f and f ◦ g are quasi-
increasing.

(iv) If f, g : X →R are quasi-increasing functions, then λf + g is quasi-increasing.

In Proposition 2(iii), it is not sufficient that g be just increasing (indeed, counter-examples to 
this effect are easily constructed, and thus left to the interested reader).

5 “Increasing” means weakly increasing. The same holds for all order statements. Else “strict” is added.
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Fig. 2. f is quasi-increasing; g is quasi-decreasing.

Using these concepts of quasi-increasing and quasi-decreasing functions, Tarski (1955)
proved an order-theoretic theorem (Tarski’s intersection point theorem) whose real-valued ver-
sion follows.

Theorem 3. If f : [a, b] → R is quasi-increasing, g : [a, b] → R is quasi-decreasing, f (a) �
g(a) and f (b) � g(b), then the set {x ∈ [a, b] : f (x) = g(x)} is non-empty, and has as largest 
element ∨{x ∈ [a, b] : f (x) � g(x)} and as smallest element ∧{x ∈ [a, b] : f (x) � g(x)}.

Theorem 3 is illustrated in Fig. 2. The conditions f (a) � g(a) and f (b) � g(b) are indispens-
able. As Theorem 3 pertains to two functions with the same domains and ranges, it is more aptly 
called an intersection point theorem (between two curves). We shall refer to it as such, motivated 
also by the need to distinguish it from the well known fixed point theorem (Tarski, 1955).

Theorem 3 may also be viewed as a more general version of the classical Intermediate-Value 
Theorem for the function f − g, where continuity is replaced by quasi-increasingness.

Milgrom and Roberts (1994) proved a fixed-point result for quasi-increasing self maps on 
a compact interval, which can be obtained as a special case of Theorem 3 by taking f to be 
the mapping of interest and g to be the 45◦ line. Then the extra conditions f (a) � g(a) and 
f (b) � g(b) are automatically satisfied (see Corollary 11). See also Vives (1990) and Vives
(1999) for details.

This simple result has a remarkable history in the economics literature in that special cases 
were independently discovered by McManus (1964) and Roberts and Sonnenschein (1976). 
These two studies used this fact as an intermediate result with the principal aim of establish-
ing existence of a symmetric (pure-strategy) equilibrium for symmetric Cournot oligopoly. The 
key property of the underlying reaction curve (of any one firm) in symmetric Cournot oligopoly 
with convex costs is that all its slopes are bounded below by −1, which is a sufficient condition 
for a function to be quasi-increasing. Vives (1999) offers a detailed overview of this literature. 
For an extension to the case of symmetric firms allowing for non-convex costs to some extent, 
using Topkis’s monotonicity result for the first time in this literature, see Amir and Lambson
(2000) and Amir (1996a).

While the property of quasi-monotonicity might at first sight appear quite esoteric as far as its 
relevance to economic modeling is concerned, we shall derive functional and convenient suffi-
cient conditions for quasi-increasingness that arise in quite natural ways in economics. The next 
subsections discuss some of these conditions and how they naturally arise.
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2.2. On some subclasses of quasi-monotone functions

With the exception of the key implication of ruling out downward jumps, the general def-
inition of quasi-increasing hardly imposes any useful structure on functions that would make 
them amenable to practical analysis from the perspective of economic applications. For instance, 
quasi-monotonic functions may fail to admit left and right limits at points of their domains, or 
to possess any smoothness properties. In this section, we derive sufficient conditions for quasi-
monotonicity that impart crucial structure to the associated subclass of functions, akin to that 
enjoyed by monotonic functions. Importantly, these sufficient conditions correspond precisely to 
properties that are naturally satisfied when quasi-monotonic functions arise as argmax’s of para-
metric optimization problems whose objective functions satisfy some quasi-complementarity 
conditions identified below.

We now investigate the properties of an important sub-class of quasi-increasing functions that 
arise naturally in economics: the class of lower-Lipschitz functions, defined as follows.6

A function f : X → R is K-lower-Lipschitz if for some K ∈R, we have

f (x) − f (y) � K(x − y) for all x, y ∈ X such that x � y.

A function f is K-upper-Lipschitz if −f is K-lower-Lipschitz, with corresponding dual prop-
erties.

Lemma 4. Let X ⊂R and a function f : X → R be K-lower-Lipschitz. Then

(a) f is quasi-increasing,7 and
(b) f is a function of bounded variation.

Proof. (a) The property of lower-Lipschitz can be rewritten as x � y =⇒ f (x) − Kx � f (y) −
Ky, that is, the function f̂ (x) = f (x) − Kx is increasing. Therefore, it is quasi-increasing by 
Proposition 2(ii). If we add to it the function x �→ Kx, which is continuous and therefore also 
quasi-increasing, the sum x �→ f (x) is quasi-increasing by Proposition 2(iv).

(b) From part (a), we have f (x) = f̂ (x) + Kx. Hence, when K � 0, f is increasing and 
when K < 0, f is the difference between two increasing functions. Either way, f is of bounded 
variation. �

A useful consequence of this result is that lower-Lipschitz functions inherit all the useful 
properties of functions of bounded variation, such as the existence of a left and right limit at 
every point of their domain, a countable number of jump discontinuities, and differentiability 
almost everywhere.

We now characterize another useful subclass of quasi-monotone functions for use below.

Lemma 5. Let r : Y → X, β : X × Y → R be two functions. Define f : Y → R as f (y) ≡
β(r(y), y). Assume that r is increasing and x �→ β(x, y) is increasing for all y. The following 
then holds:

6 Recall that f is K-Lipschitz if for some K � 0, we have |f (x) − f (y)| � K|x − y| for all x, y ∈ X.
7 If K � 0, f is necessarily increasing and hence quasi-increasing. Thus this lemma is useful only for K < 0.
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(a) If β is jointly continuous, f is quasi-increasing.
(b) If y �→ β(x, y) is K-lower-Lipschitz for all x, f is K-lower-Lipschitz.
(c) If X, Y are compact intervals and β is continuously differentiable in y for each x, then f is 

K-lower-Lipschitz.

One noteworthy aspect of the above result is that the function β is not required to be monotonic 
in its second argument y. In general, f as defined in this Lemma may well fail to be increasing.

Lemma 5 clearly possesses an order-dual for quasi-decreasing or K-lower-Lipschitz func-
tions.

We are now ready for an investigation of the emergence of the aforementioned subclasses of 
quasi-monotone functions as solutions to parametric optimization problems.

2.3. Sufficient conditions for quasi-increasing argmax

In what follows, we shall be interested primarily in quasi-monotone functions that arise as 
selections of players’ reaction correspondences in a game. To this end, we must therefore inves-
tigate how such functions arise as solutions to parametric optimization problems. Thus we shall 
consider a selection r : Y → X of the correspondence R : Y ⇒X, with X, Y ⊂R defined by

r(y) ∈ R(y) ≡ arg max
x∈X

M(x,y), (2)

for some objective function M : X × Y → R. We wish to provide conditions on M such that 
some or all of the selections of the correspondence r are quasi-increasing in the parameter y.

It is useful to recall that the extremal selections of r will be increasing in y if M satisfies 
a single-crossing property (or SCP) with respect to (x; y), i.e., if for any (x′; y′) � (x; y), we 
have8

M(x′, y) � (>)M(x,y) =⇒ M(x′, y′) � (>)M(x,y′). (3)

For an argmax to be quasi-increasing in the parameter y, we need instead the notion of shifted 
single-crossing, which we introduce next via a judicious (non-separable) change of decision 
variable.

Let there be given a continuous function α : X × Y → Z that is strictly increasing in x
for fixed s and increasing in y for fixed x. Here, Z is the range of α and it is given by 
Z ≡ [α(x, y), α(x, y)], where x = infX, x = supX, y = infY , and y = supY .

If one defines a new variable z = α(x, y), since α is continuous and strictly increasing in 
x, there exists a (parametrized inverse) function β : Z × Y −→ X such that x = β(z, y). In 
other words, α has an inverse in its first argument, that is, there exists a function β satisfying 
α(β(z, y), y) = z and β(α(x, y), y) = x. It is not difficult to see that β must be increasing in its 
first argument. Further, assume that β is continuous.

In view of the monotonicity properties of α, and of the fact that X = [x, x] is independent of 
y, the set of feasible values of z for a fixed value of y is Z(y) ≡ [α(x, y), α(x, y)]. This set is 
clearly ascending in y (since α is increasing in y). The following in an important property for 
our analysis.

8 Throughout, while we use the notions of increasing differences and single-crossing as sufficient conditions on an 
objective function for an increasing argmax, we could also use the interval dominance order (Quah and Strulovici, 2009)
for the same purpose. As increasing differences is the only one that survives addition without restrictions (see Shannon, 
1995 and Quah and Strulovici, 2012 for more on this), we rely on this property in the applications section.
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Definition 6. Consider a function α : X × Y → Z that is continuous, strictly increasing in x
and increasing in y, and β(z, y) be the continuous inverse of α with respect to the first vari-
able. A function M : X × Y −→ R satisfies a β-shifted SCP with respect to (x; y) if M̃(z, y) ≡
M(β(z, y), y) has the SCP (3) with respect to (z; y) ∈ Z × Y , i.e., for any (z′; y′) � (z; y),

M̃(z′, y) � (>)M̃(z, y) =⇒ M̃(z′, y′) � (>)M̃(z, y′). (4)

Moreover, M satisfies a β-shifted strict SCP with respect to (x; y) if M̃(z, y) ≡ M(β(z, y), y)

has the strict SCP with respect to (z; y) ∈ Z×Y , that is, for any (z′; y′) � (z; y), (z′; y′) �= (z; y),

M̃(z′, y) � M̃(z, y) =⇒ M̃(z′, y′) > M̃(z, y′). (5)

A sufficient condition for the β-shifted SCP is β-shifted increasing differences, defined by 
M̃(z, y) ≡ M(β(z, y), y) having increasing differences in (z, y), when β is continuous in (z, y)

and strictly increasing in z. If both M and β are C2, this is equivalent to9,10

M̃12(z, y) = [
M11(β(z, y), y)β2(z, y) + M12(β(z, y), y)

]
β1(z, y)

+ M1(β(z, y), y)β21(z, y) � 0

Defining the set-valued functions R : Y ⇒ X and Z∗ : Y ⇒ Z by

R(y) ≡ arg max
x∈X

M(x,y) (6)

and

Z∗(y) ≡ arg max
z∈Z(y)

M(β(z, y), y), (7)

we have a one-to-one mapping between selections r of R and selections z∗ of Z∗: given z∗(·) ∈
Z∗(·), we have r(y) = β(z∗(y), y) ∈ R(y) and given r(·) ∈ R(·), we have z∗(y) = α(r(y), y) ∈
Z∗(y).

Proposition 7. Let M : X × Y →R satisfy a β-shifted SCP with respect to (x; y), with β jointly 
continuous and strictly increasing in its first argument. Assume R(y) �=∅ for all y ∈ Y . Then

(a) The maximal and minimal selections of R, r and r , are both quasi-increasing in y.
(b) If in addition β is continuously differentiable, r and r are K-lower Lipschitz in y for some K .
(c) If M satisfies the β-shifted strict SCP, then all selections of R are quasi-increasing in y.

Proof. (a) Since M(β(z, y), y) has the single-crossing property with respect to (z; y), and the 
feasible set Z(y) ≡ [α(x, y), α(x, y)] is ascending in y (since α is increasing in y), we know 
from the Topkis–Milgrom–Shannon monotonicity theorem that the extremal selections of S(y), 
s∗ and s∗ are increasing functions of y. Since β is increasing in its first coordinate and continuous 
by assumption, the assumptions of Lemma 5(a) are satisfied by β and s∗ (as well as β and s∗), 
and we conclude that r(y) = β(s∗(y), y) and r(y) = β(s∗(y), y) are both quasi-increasing in y.

(b) This follows directly from Lemma 5(c).
(c) It is well known that the strict single-crossing property implies that all selections are 

monotonic. Thus, the proof of (c) is similar to the proof of (a) and therefore omitted. �
9 In this paper, we use subscripts on functions to denote their corresponding partial derivatives.

10 This equivalence is a well-known result about increasing differences (Topkis, 1978).
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The following economic application illustrates the change of variable used above in the con-
text of a familiar model. In particular, this provides some guidance as to how a suitable choice of 
the function α is arrived at. Several more relevant examples are given in the applications section.

Example 8. Consider a Bertrand duopoly with differentiated substitute products wherein firms 1
and 2 choose prices x, y (in some given price set [0, p]) and face a demand system (D, D̂) for 
their products, respectively. Assume linear cost functions with marginal costs c and ̂c. In what 
follows, we focus only on firm 1 (say). Its profit function is

F(x, y) = (x − c)D(x, y). (8)

The demand function D is assumed to be continuously differentiable and to satisfy D1 < 0 (i.e., 
the Law of Demand) and D2 > 0 (i.e., products are substitutes in demand). Our aim here is to 
show that any selection f (y) of Firm 1’s reaction correspondence arg maxx∈[0,p](x − c)D(x, y)

is quasi-decreasing in y, under the assumption that (this is easily seen to be very general)

D2D
2
1 − D [D1D12 − D2D11] > 0 for all (x, y). (9)

To establish this, let firm 1 respond by choosing its own output z instead of its price x, i.e. 
let z = D(x, y). Since D1 < 0 and D’s domain and range are compact, parametric inversion will 
yield a jointly continuous function h such that the following inverse relationship holds11

x = h(z, y) ⇐⇒ z = D(x,y). (10)

In fact, h is differentiable and it is easy to check that the partials of h and D are then related by

h1 = 1

D1
, h2 = −D2

D1
, and h12 = 1

D3
1

(D2D11 − D1D12). (11)

Given y, the best response problem of firm 1 may be equivalently viewed as

max
{
F̃ (z, y) � z[h(z, y) − c] : z ∈ [D(p,y),D(0, y)]

}
. (12)

The first step is to derive conditions under which the argmax z∗(y) is increasing in y. Since the 
feasible set [D(p, y), D(0, y)] is ascending in y (as D2 > 0), by Topkis’s Theorem, all the se-
lections of z∗(y) are increasing in y if F̃ has strictly increasing differences in (z, y). For this, it 
suffices that F̃12(z, y) = h2(z, y) + zh12(z, y) > 0, for all (z, y). Using (11), the latter is equiva-
lent to

−D2

D1
+ D

1

D3
1

(D1D12 − D2D11) > 0,

which is the same as (9).
Since f (y) = h(z∗(y), y), z∗(·) is increasing, and h is decreasing in its first argument and 

jointly continuous, the dual of Lemma 5(a) implies that f (y) is quasi-decreasing in y.
The interpretation is that when firm 2 raises its price y, firm 1 may optimally react by de-

creasing or increasing its price x, but, in the latter case, never by so much that firm 1’s output 

11 To see that h is continuous, let (zn, yn) → (z̄, ̄y) ∈ [0, p̄]2 and let xn = h(zn, yn) and x̄ = h(z̄, ̄y), xn, ̄x ∈ [0, p̄]. 
Since [0, p̄] is compact, {xn} has a subsequence that converges to a point x̂ ∈ [0, p̄]. Passing to this subsequence if nec-
essary, we may assume that xn → x̂. Since D is continuous and (zn, yn) → (z̄, ̄y), (10) implies that zn = D(xn, yn) →
D(x̂, ̄y) = z̄. Thus, (10) again implies that x̂ = h(z̄, ̄y) = x̄, which shows that h is continuous.
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would end up decreasing. In other words, while strategic substitutability in pricing decisions is 
allowed to any extent, a limited form of strategic complementarity can also be accommodated 
by condition (9). More precisely, condition (9) accommodates what we named strategic quasi-
substitutability.

We shall return to this economic application below to illustrate some other results.

The following remark introduces a particular change of variable with a separable structure 
that will prove useful in some of the economic applications presented in section 4.

Remark 9. For many problems, a simple change of variable is as follows. Let z = α(x, y) =
x + k(y) for some strictly increasing function k. Then for Z∗(·) to be increasing in y, it is 
sufficient that M̃(z, y) ≡ M(z − k(y), y) has the single-crossing property with respect to (z; y). 
A sufficient condition that is easy to check is that M̃(z, y) has increasing differences with respect 
to (z, y). When M̃ and k are both twice continuously differentiable, this is equivalent to

M̃12(z, y) = −M11(z − k(y), y)k′(y) + M12(z − k(y), y) � 0. (13)

The idea of a suitable change of variable as a prelude to performing comparative statics of a 
non-monotonic sort has appeared repeatedly in the literature on supermodular games. In a set-
ting with scalar decision and parameter variables, Granot and Veinott (1985) define the notion of 
doubly-increasing differences for an objective function as being the conjunction of the proper-
ties of increasing differences and of β-shifted increasing differences with an additively separable 
function (as in the previous remark). Curtat (1996) extends their result to multi-dimensional 
decision and parameter sets. Similar ideas have also appeared in the context of oligopoly ap-
plications with quasi-increasing reaction curves See e.g., Amir (1996a) and Amir and Lambson
(2000), where the relevant change of variable is z = x + y, as well as Hoernig (2003), among 
others.12

The modern theory of monotone comparative statics is often qualified as being of a qual-
itative nature. Indeed, it aims to predict the directions of change of endogenous variables in 
response to changes in exogenous parameters, but usually not the associated magnitudes of these 
changes. In contrast, the conclusion that an argmax is quasi-decreasing in a parameter can be 
viewed as a comparative statics result of a non-monotonic and quantitative sort. As an illustra-
tion, consider the Bertrand duopoly example above. The derived conclusion may be re-stated as 
f ′(y) � −D2(f (y), y)/D1(f (y), y), for almost all y (w.r.t. Lebesgue measure),13 which pro-
vides a lower bound on the rate of decrease of f (y) as y changes. If one adds the reasonable 
further assumption on demand that D2(f (y), y)/ |D1(f (y), y)| < 1 for all y, then one can con-
clude the firm 1 never lowers its price by as much as the increase in its rival’s price, a conclusion 
of a clearly quantitative nature.

Observing that a similar (dual) argument can handle the derivation of upper bounds on the rate 
of the change of argmax’s, as will be illustrated in the last section below, this method can easily 
be used to provide sufficient conditions on the players’ reaction curves in a game to constitute 

12 More specifically, in Cournot duopoly with convex costs, although the reaction curve x∗(y) need not be monotonic 
(up or down), the aggregate reaction z∗(y) = x∗(y) + y is increasing, in rival’s output y. This means that the reaction 
curve x∗(y) is 1-lower Lipschitz (thus quasi-increasing). An unusual specification of demand and cost functions for 
which these properties are nicely illustrated is given in [Novshek, 1985, Example 2 pp. 88–89].
13 This is justified since f is a function of bounded variation (Lemma 4).
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contraction mappings in a global sense, thus ensuring uniqueness of PSNE. For instance, Amir 
(1996a) uses such arguments to establish uniqueness of Cournot equilibrium.

2.4. A fixed point result

This subsection states the simplest form of our basic fixed point theorem, and relates it to 
Tarski’s intersection point theorem. To fix ideas, the functions may be thought of as selections 
from players’ best response correspondences in a strategic game. In the next section, we pro-
vide sufficient conditions on the payoff functions that yield the given properties on players’ best 
responses.

Theorem 10. Let f : [a, b] → [c, d] be quasi-increasing, g : [c, d] → [a, b] be continuous 
and increasing, and h(x, y) = (g(y), f (x)). Then there exists (x̄, ȳ) ∈ [a, b] × [c, d] such that 
h(x̄, ȳ) = (x̄, ȳ).

Proof. By Proposition 2(iii), the composition f ◦g : X −→ X is quasi-increasing. Let ι : X → X

be the identity. As ι is continuous, it is quasi-decreasing by Proposition 2(i). If infX = x and 
supX = x̄, we have f ◦ g(x) � x = ι(x) and f ◦ g(x̄1) � x̄ = ι(x̄). Hence the assumptions of 
Tarski’s Intersection Point Theorem 3 hold for f ◦ g and ι and X̄1 ≡ {x ∈ X : f (g(x)) = x} is 
nonempty. If x̄ ∈ {x ∈ [a, b] : g ◦ f (x) = x} and we let ȳ = f (x̄), then (x̄, ȳ) is a fixed point 
of h. �

From this proof, it is clear that the key idea here is to translate Tarski’s result from an inter-
section point result to a fixed point theorem for an important subclass of bivariate maps, namely 
those that are formed by the conjunction of two one-dimensional functions, as is the best re-
sponse mapping for a two-player game. Put differently, the idea is to translate an intersection 
point result between two functions with the same domains and the same ranges to an intersection 
point result between two functions with interchanged domains and ranges, in line with the usual 
graphical depiction of intersecting reaction curves in economics as a simple way of representing 
PSNE.

A well-known, interesting, and immediate corollary is the following.

Corollary 11. (a) Let f : [a, b] −→ [a, b] be quasi-increasing. Then f has a fixed-point.

(b) Let f : [a, b] −→ [a, b] be such that f (x′)−f (x)
x′−x

� −k, for some k � 0 and any x′, x ∈
[a, b], x �= x′. Then f has a fixed-point.

Proof. (a) Simply apply Theorem 10 to f and g(x) = x (the identity).
(b) The slope condition means that f is k-lower-Lipschitz, hence quasi-increasing

(Lemma 4). �
As noted earlier, the result in part (b) with k = 1 was proved and used by McManus (1964)

and Roberts and Sonnenschein (1976) to establish existence of symmetric Cournot equilibrium 
in symmetric Cournot oligopoly with convex and linear costs respectively. The latter property 
alone ensures that each firm’s reaction curve has all its slopes above −1 (though it may be 
discontinuous), so that each firm always reacts to rivals’ output in a way that increases total 
output. Existence then follows from this property alone, even though the game is neither of 
strategic substitutes nor of strategic complements. Amir and Lambson (2000) extends this result 
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to oligopolies with some level of non-convex costs. Milgrom and Roberts (1994) prove part (a)

independently and use it to derive results on the comparative statics of equilibrium points.
The following is the order-dual of Theorem 10. The economic models to which it applies may 

be substantially different from those of Theorem 10, as confirmed in some examples below.

Theorem 12. Let f : [a, b] → [c, d] be quasi-decreasing, g : [c, d] → [a, b] be continuous and 
decreasing and h(x, y) = (g(y), f (x)). There exists (x̄, ȳ) ∈ [a, b] × [c, d] such that h(x̄, ȳ) =
(x̄, ȳ).

The fixed point theorems presented in this section will be translated into equilibrium existence 
results for games in section 3. The next subsection deals with the issue of uniqueness of fixed 
points of quasi-monotone functions and will be useful to establish uniqueness of PSNE.

2.5. Uniqueness of fixed points

In some economic applications, beyond the issue of existence, the uniqueness of fixed points 
is often a highly desirable property. In fact, most studies in applied microeconomics postulate 
game-theoretic models with a unique PSNE, whether specific functional forms are adopted or 
not. The standard methods used to establish uniqueness of fixed points or PSNEs typically rely 
on dominant diagonal conditions on payoff functions or, equivalently, on contraction arguments 
for best response mappings (Rosen, 1965; Milgrom and Roberts, 1990). Both of these conditions 
are generally postulated to hold in a global sense. In this section, we present two results that 
establish the uniqueness of fixed points in the present setting without requiring global contraction 
arguments. Our first result of this form allows the function to be quasi-decreasing (instead of 
continuous) and satisfy a local contraction property along the diagonal, that is, only at candidate 
fixed points.14

Proposition 13. (a) Let f : [a, b] → [a, b] be a quasi-decreasing function, with the property that, 
at every x ∈ [a, b] such that x = f (x), one has

lim sup
y→x

f (y) − f (x)

y − x
< 1, (14)

then f has at most one fixed point.
(b) If f is a correspondence such that every one of its selections satisfies the assumptions in 

(a), then f has at most one fixed point, i.e. there is a unique x ∈ [a, b] with x ∈ f (x).

The proof (in Appendix A) essentially shows that the four Dini derivatives satisfy (14) at any 
candidate fixed point. Part (b) is the useful form of this result, since our change of variable ap-
proach delivers via Topkis’s Theorem optimal argmax correspondences with all selections being 
strictly quasi-decreasing functions whenever the objective satisfies a strict dual SCP property. 
The key property that makes Part (b) an easy extension of Part (a) is that such argmax’s are 
multi-valued at countably many points, thus being essentially like functions as far as uniqueness 
is concerned.

Relying on first order conditions under smoothness assumptions, another convenient test for 
the uniqueness of a fixed point that is non-global in character can be given in the following form.

14 To underscore the novelty of this result, an application to Bertrand competition is presented in Section 4.
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Proposition 14. Let X = [a, b] ⊂ R and n ∈ N. Assume that M : Xn → R is differentiable in its 
first coordinate and satisfies the following:

x, x′ ∈ X,x′ > x and M1(x, x, . . . , x) � 0 imply M1(x
′, x′, . . . , x′) < 0. (15)

Then a function r : X → X satisfying

r(x) ∈ arg max
y∈X

M(y,x, . . . , x)

has at most one fixed point.

Proof. The proof rules out multiple interior fixed points, and then multiple corner fixed points. 
Since r(x) ∈ arg maxy∈X M(y, x, . . . , x) and M is differentiable in its first variable, we must 
have M1(r(x), x, . . . , x) = 0 if r(x) is an interior point of X. Assume that x and x′ are interior 
fixed points of r , with x′ > x. Then, M1(x, x, . . . , x) = 0 and M1(x

′, x′, . . . , x′) = 0, but this 
contradicts (15).

Assume now that the endpoint a is a fixed point of r . In this case, we must have 
M1(a, . . . , a) � 0. By (15), M1(x

′, . . . , x′) < 0 for all x′ > a, which shows there is no other 
fixed point of r above a.

Similarly, if the endpoint b is a fixed point of r , then M1(b, . . . , b) � 0 and (15) implies that 
M1(x, . . . , x) > 0 for all x < b. Therefore, there are no other fixed point of r below b.

It follows that there is at most one fixed point of r(·). �
Interestingly, (15) may be seen as a strict dual single-crossing condition for the partial 

M1(x, . . . , x), viewed as a function of one variable. As such, it becomes transparent that a suffi-
cient condition for (15) is that M1(a, a, . . . , a) is strictly decreasing in a, which (if M is smooth) 
is in turn implied by

M11(a, . . . , a) +
∑
j �=1

M1j (a, a, . . . , a) < 0.

This is a dominant diagonal condition: every row sum of the Hessian matrix of M is nega-
tive. Nevertheless, this condition is significantly less restrictive than the typical conditions in the 
literature, in that it is not required to hold globally, but rather only along the diagonal of the 
domain Xn.

3. Pure-strategy Nash equilibrium in games

This section contains our results about the existence and uniqueness of pure-strategy Nash 
equilibrium (henceforth PSNE) in games. Its main objective is to translate our fixed points results 
into conclusions about the existence of PSNE. In the process, the relevant sufficient conditions 
shall be placed on the primitives of the game. We begin by describing results for two players 
games in subsection 3.1. Then n-player symmetric games are the object of subsection 3.2.

3.1. Two-player games

Consider a two-player strategic game with action spaces X and Y and payoff functions F, G :
X ×Y −→ R. We first translate Theorem 10’s assumptions onto conditions on the game payoffs.
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Theorem 15. Assume that X and Y are compact intervals in R, F and G are upper semi-
continuous in own action, and that:

(a) F satisfies a β-shifted SCP in (x; y) for some β that is continuous and increasing, and
(b) G is strictly quasi-concave in y for each fixed x, and satisfies the SCP with respect to (y; x).

Then the set E of PSNE is non-empty.

Proof. Due to the upper semi-continuity assumption, the best-reply correspondences have non-
empty values. By Proposition 7, the maximal and minimal selections of the best-reply correspon-
dence for the first player, x̄(·) and x(·), are quasi-increasing.

From the assumption that G is strictly quasi-concave and upper semi-continuous in y, we 
know that the best-reply correspondence is a single-valued continuous function denoted ȳ. From 
the single-crossing property, ȳ(·) is increasing in x. By Theorem 10, there exists (x∗, y∗) such 
that x̄(y∗) = x∗ and ȳ(x∗) = y∗, that is, (x∗, y∗) is a PSNE of the game and E is non-empty. �

It is instructive to contrast this result with its counterpart from the theory of supermodular 
games for the present setting. While the latter relies on Tarski’s well known fixed point theorem 
for increasing maps, the present result is based on a reinterpretation of Tarski’s intersection point 
theorem as a fixed point theorem for bivariate maps that arise as best-response maps of two-player 
games. In terms of scope, the two approaches are not nested. On the one hand, for player 1, the 
present result imposes less structure since his reaction curve is only quasi-decreasing and not 
necessarily increasing. On the other hand, for player 2, the present result requires continuity 
of the reaction curve in addition to monotonicity while the latter property is all that is needed 
for supermodular games. Put differently, the present result relaxes strategic complementarity to 
strategic quasi-complementarity (i.e., allows a limited form of strategic substitutability) for one 
player, but imposes continuity as an extra condition on the reaction curve of the other player.

As the result relies on a mix of continuity and quasi-monotonicity conditions, it may be re-
garded as a synthesis of the two existing methodologies for establishing existence of PSNE in 
general games: the classical (topological) approach via the Brouwer/Kakutani fixed point theo-
rem (Nash, 1951 and Rosen, 1965) and the algebraic approach via Tarski’s fixed point theorem 
(Topkis, 1979).

Theorem 15 admits an order-dual, which is as follows.

Theorem 16. Assume that X and Y are compact intervals in R, and F and G are upper semi-
continuous in own action. Let α be a continuous function on X × Y that is strictly decreasing in 
x and decreasing in y, and β(·, y) be the inverse of α with respect to the first variable. Assume 
that

(a) F̂ (z, y) ≡ F(β(z, y), y) satisfies the dual SCP with respect to (x; y), and
(b) G is strictly quasi-concave in y for each fixed x, and satisfies the dual SCP with respect to 

(y; x).

Then the set of PSNE of this game is non-empty.

Proof. If the order on (say) player 2’s action set is reversed, the assumptions of this theorem turn 
into those of Theorem 15. Hence, the conclusion follows from the latter result. �
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While equivalent to Theorem 15 from a mathematical point of view, in terms of economics 
applications, this order-dual will apply to models that are quite distinct from those of Theorem 15. 
In fact, this version will be directly invoked in some of the applications later on.

Theorem 16 can be extended to uniqueness of PSNE by using the insight from Proposition 13.

Proposition 17. In addition to the assumptions of Theorem 16, assume that the composition of 
the two reaction curves f ◦ g satisfies (14) at all of its fixed points. Then there exists a unique 
PSNE.

Proof. Since the composition f ◦ g is quasi-decreasing, the uniqueness conclusion follows di-
rectly from Proposition 13, when one takes into account that the set of PSNE coincides with the 
set of fixed points of the composition f ◦ g. �

Theorem 15 and its order-dual (Theorem 16) are a priori valid only for two-player asymmetric 
games. Nevertheless, for the case of symmetric games, the N -player case is just as easily handled.

3.2. N-player symmetric games

Consider a n-player game, where all players have the same action space X, a compact interval 
in R, and the same payoff function F : X × Xn−1 → R, where the first entry is the player’s own 
action. With an abuse of notation, we write a joint action vector x ∈ Xn as (xi, x−i ) for any 
i ∈ N .

We now state a basic existence result for symmetric games, special versions of which have 
surfaced in the economics literature a number of times in specific contexts (e.g., Milgrom and 
Roberts, 1994; Amir and Lambson, 2000 and Hoernig, 2003). This result provides conditions on 
the payoff function that lead to the (common) reaction correspondence satisfying Corollary 11(a).

Theorem 18. Assume that (a) F is upper semi-continuous in own action (or first argument);
(b) for each a ∈ X, F̂ (x, a) ≡ F(x, a, . . . , a) satisfies a β-shifted single-crossing property 

with respect to (x; a) for some β : X × X → X that is continuous and increasing.
Then the set of symmetric PSNE is non-empty.

Proof. The assumption that F is upper semi-continuous in its first entry guarantees that the 
best-reply correspondence is non-empty. By Proposition 7, the maximal best-reply restricted 
to symmetric actions x̄ : X → X is quasi-increasing. By Corollary 11, the set of fixed points 
of x̄ is a non-empty chain. Since a fixed point of x̄ is an equilibrium, the set of equilibria is 
non-empty. �

For the next uniqueness result, existence of PSNE may be guaranteed either by the continu-
ity of the (common) reaction curve or by the fact that it is quasi-increasing. In this sense, the 
uniqueness result at hand is applicable in contexts other than those considered in this paper.

Theorem 19. Assume that F is C2 and

(a) For each a ∈ X, F̂ (x, a) ≡ F(x, a, . . . , a) is either strictly quasi-concave in x or satisfies 
a β-shifted SCP with respect to (x; a) for some β : X × X → X that is continuous and 
increasing.
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(b) For each a ∈ X, F̂ satisfies F̂11(a, a) + F̂12(a, a) < 0.

Then, there exists a unique symmetric PSNE of this game.

Proof. The existence of a symmetric PSNE follows from either of the two assumptions in (a), 
the quasi-concavity in x or the β-shifted single-crossing property, see Theorem 18. Since F is 
twice continuously differentiable, we know from (b) that for each a, F̂11(x, a) + F̂12(x, a) < 0
for all (x, a) in some neighborhood of (a, a). Hence, with the change of variable z = x − a, 
F̂ (z + a, a) has strongly increasing differences in (z, a), i.e., ∂F̂ /∂a is strictly increasing in 
z; see Amir (1996b), Edlin and Shannon (1998) or Topkis (1998, p. 79). It follows that all the 
selections of z∗(a) ≡ F̂ (z + a, a) are strictly increasing in a. In other words, x∗(a) has all its 
slopes strictly less than 1 in a neighborhood of a. The uniqueness of symmetric PSNE then 
follows directly from Proposition 13. �

Again, the main novelty in the underlying argument is that the assumption in part (b) generates 
a local contraction property for the reaction curve along the diagonal, which is not required to 
hold in a global sense. Due to the latter point, multiple asymmetric PSNEs are not ruled out.

Before providing an example to illustrate the use of our uniqueness results, we provide a 
new uniqueness result for symmetric pure-strategy Nash equilibrium for symmetric normal-form 
games, which is of independent interest for many economic applications.

Theorem 20. Assume that:

(a) F is differentiable in its first variable (own action) and
(b) For any x′, x ∈ X with x′ > x, F1(x, x, . . . , x) � 0 =⇒ F1(x

′, x′, . . . , x′) < 0.

Then, there exists at most one symmetric equilibrium of this game.

Proof. This follows directly from Proposition 14. �

Observe here that the given assumptions do not preclude the existence of asymmetric PSNE.
In the case of smooth payoffs, a sufficient condition for the assumption in Theorem 20(b) is 

that dF(x, . . . , x)/dx is strictly decreasing in x (see comments after Proposition 14).
We now provide an illustration of Proposition 13 in a familiar setting.

Example 21. Consider the symmetric version of the Bertrand model of Example 8 with demand 
function D(x, y). We shall show that there can be at most one symmetric Bertrand equilibrium 
provided one assumes that demand satisfies (9) and

D2(x, x) < |D1(x, x) | for all x. (16)

Recall that Example 8 showed that every selection of the best-response correspondence f (y)

is quasi-decreasing in y under Assumption (9), i.e., that z∗(y) = D(f (y), y) is increasing in y.
Consider any candidate fixed point y0 ∈ f (y0). In the Appendix A, we show that (14) holds 

at every such y0 (and for every selection of f ).
Hence, there is a unique symmetric PSNE by Proposition 13.
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The reaction curve is required to be contractive only locally, around fixed points; it need not be 
a global contraction. For the latter property to prevail, one would need to strengthen Assumption 
(16) to hold at all pairs (x, y). This would be a much more restrictive assumption, which is 
not satisfied by many known (non-linear) demand systems, with the linear demand being an 
important exception. The existing uniqueness results use this stronger condition (see Vives, 1999
for details).

We wish to emphasize though that a limitation of the present approach to uniqueness of PSNE 
is that it does not exclude multiple asymmetric PSNE. The standard approach pioneered by Rosen
(1965) and its extensions require stronger, global assumptions but delivers full uniqueness of 
PSNE.

4. Some selected applications

This section presents a selection of well known models in applied microeconomics for which 
the results of the present paper apply quite naturally and in a straightforward manner to yield 
novel results. Despite the fact that some of these models have extensive literature dealing specif-
ically with the existence of PSNEs, the results proposed below constitute either significant 
generalizations of their counterparts in the literature or new versions that are not nested with 
existing ones. Since the results presented below are actually new to the separate literatures deal-
ing with each model, we present the results in the form of formal propositions with concise 
proofs.

The first model is an illustration of our ancillary results and the role that quasi-monotonic 
functions can play in economic models, in particular nonmonotone comparative statics, rather 
than the existence of PSNE. The next two applications serve to illustrate how our results can be 
used to tackle the issue of PSNE existence for classes of games that cannot be handled via the 
existing approaches, thus giving some economic insight as to how the key asymmetry between 
the two players’ reaction curves can arise naturally.

4.1. Optimal growth without decreasing returns

We consider a modified version of Solow’s growth model allowing increasing returns, and 
show that the optimal policy is 1-upper Lipschitz (all slopes ≤ 1), but not necessarily increas-
ing, under very general conditions. In addition, an instructive two-period example is solved in 
closed-form.15

With a utility function u and a production function f , the problem writes (with 0 < δ < 1)

max
∞∑
t=0

δtu(ct ) subject to st+1 = f (st − ct )

where st is the stock of capital/labor ratio and ct ∈ [0, st ] is the consumption at period t =
0, 1, . . . .

Assume that u and f are both twice continuously differentiable and satisfy u′ > 0, u′′ < 0
and f ′ > 0. However, unlike the standard treatment, we do not impose the usual assumption that 
f ′′ < 0, so as to allow for increasing returns to scale in production, either locally or globally.

The Bellman equation is then

15 See Amir et al. (1991). For monotonicity issues in multi-dimensional Ramsey dynamic models, see Amir (1996b).
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V (s) = max
0≤c≤s

{u(c) + δV [f (s − c)]}

In the standard treatment, one assumes that f ′′ < 0, in which case V is concave and the maxi-
mand has increasing differences in (c, s). Since the constraint [0, s] is ascending in s, the optimal 
consumption c∗(s) is increasing in the stock s (this is a well known property of the standard 
model).

However, under the present assumptions, the maximand need not have increasing differences 
(nor the SCP), and c∗(s) need not increase in s (see example below). Consider the change of 
variable y = s − c (i.e., use investment as the decision), and rewrite the Bellman equation equiv-
alently as

V (s) = max
0≤y≤s

{u(s − y) + δV [f (y)]}.

Then clearly the optimal investment y∗(s) is increasing in s (irrespective of the properties of 
both f and V ). Hence c∗(s) is 1-upper Lipschitz (i.e., all its slopes are ≤ 1), and hence quasi-
decreasing.16

As a specification of interest for a closed-form illustration, consider the two-period problem 
with u(c) = √

c, f (s) = s3 and δ = 1. The RHS of the Bellman equation is then

max
0≤c≤s

{√c +
√

(s − c)3}
A long but straightforward computation yields the optimal policy correspondences

c∗(s) =
{

s, if s ≤ ŝ
1
6 [3s + (9s2 − 4)1/2], if s ≥ ŝ

and

y∗(s) =
{

0, if s ≤ ŝ
1
6 [3s + (9s2 − 4)1/2], if s ≥ ŝ

where ̂s is the unique solution to
√

s = (3s − (9s2 − 4)1/2 + [(3s + (9s2 − 4)]3/2.

It is easy to see that c∗(s) has a downward jump at ̂s, and that all its slopes are ≤ 1 (so it is 
quasi-decreasing). The investment policy y∗(s) has selections that are all increasing in s.

This application serves to illustrate how non-monotone comparative statics arises very nat-
urally in economic dynamics and stochastic games. In addition, an explicit solution is also of 
interest here.

4.2. Price-quantity duopoly

In pioneering work on linear duopoly, Singh and Vives (1984) introduced a hybrid notion of 
duopoly wherein one firm is a price setter and the other firm a quantity setter. They analyzed the 
case of linear demands and derived closed-form PSNEs, with the reaction curves being linear, 
downward-sloping for the price setter and upward-sloping for the quantity setter. Due to this 

16 This property arises naturally in various dynamic economics models. Amir (1996c) uses this space of consumption 
functions as the set of Markov strategies in a stochastic game. Dechert and Nishimura (1983) use the strict version (slopes 
< 1) to study the asymptotic properties of the optimal stock for the growth model at hand.
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two-way monotonicity, no lattice-theoretic argument can establish existence of PSNE in more 
general cases. Instead, one would therefore a priori resort back to a Brouwer-type fixed point 
argument to obtain PSNEs (and thus impose continuity of the reaction curves). This is indeed 
the approach pursued by Singh and Vives (1984) in the part of their paper dealing with general 
demand functions.

Here we show that our approach provides a general PSNE existence result for this hybrid 
duopoly.

Consider an asymmetric duopoly with differentiated substitute products and linear costs c1
and c2. Let the direct and inverse demand functions by Di(p1, p2) and P i(q1, q2), i = 1, 2, 
where (p1, p2) and (q1, q2) are the prices and the outputs for the two firms.17 To introduce 
the new hybrid duopoly, we need to consider the related standard price (Bertrand) and quantity 
(Cournot) games. For the price (Bertrand) game, firm i’s payoff function is

�i
B(p1,p2) = (pi − ci)D

i(p1,p2).

For the quantity (Cournot) game, firm i’s payoff function is

�i
C(q1, q2) = qi[P i(q1, q2) − ci].

To define the price-quantity duopoly, assume that Di and P i are smooth (for convenience only 
in establishing the relevant complementarities via Topkis’s cross partial test), and that Di

i < 0 and 
P i

i < 0 (i.e., the Law of Demand). To avoid technicalities, we also assume that the firms’ outputs 
and prices lie in compact sets.18 For the products to be substitutes, we need to postulate that

∂Di(p1,p2)

∂pj

> 0 and
∂P i(q1, q2)

∂qj

< 0.

By taking parametrized inverse functions, there are functions H1 and H2 such that

p1 = P 1(q1, q2) ⇐⇒ q1 = H 1(p1, q2)

and

q2 = D2(p1,p2) ⇐⇒ p2 = H 2(p1, q2).

The payoffs in the price-quantity duopoly (with firm 1 as the price setter) are then

F(p1, q2) = (p1 − c1)H
1(p1, q2)

and

G(p1, q2) = q2[H 2(p1, q2) − c2].
We can now state our main result for this section. A discussion and economic interpretation of 
the assumptions used here follows the proof below.

17 The micro-economic foundation for this demand system is the customary one of a representative consumer maximiz-
ing a smooth utility function that is quasi-linear in a numeraire good and has a negative definite Hessian matrix in the 
two goods under consideration. Under these assumptions, the inverse demands (P1, P2) are well-defined as the gradient 
of the utility functions, and invertible to form the direct demands (D1, D2). We omit the details of this derivation for the 
sake of brevity and refer the reader to Vives (1999, Sections 3.1 and 2.5). With this foundation in place, we may take the 
demand system as given and the four functions as primitives for our purposes here.
18 This may be justified on economic grounds as firms may face capacity constraints and regulatory price ceilings.
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Proposition 22. Assume that the original demand system satisfies the following conditions

P 1
2 (q1, q2) + q1P

1
12(q1, q2) < 0, for all q1, q2 ≥ 0 (17)

D2
1(p1,p2) + (p2 − c2)D

2
21(p1,p2) > 0, for all p1,p2 ≥ 0 (18)

and 1
D2(p1,p2)

is strictly convex in p2, or

D2(p1,p2)D
2
22(p1,p2) − 2

[
D2

2(p1,p2)
]2

< 0 (19)

Then the price-quantity duopoly possesses a PSNE.

Proof. Denote the reaction correspondences in the price-quantity duopoly by

r1(q2) = arg max
p1

F(p1, q2) and r2(p1) = arg max
q2

G(p1, q2).

Consider the change of variable

z1 = H 1(p1, q2) ⇐⇒ p1 = h1(z1, q2).

Then firm 1’s payoff function can be rewritten as

F̃ (z1, q2) = z1[h1(z1, q2) − c1)]
For firm 1, we aim to show that z∗

1 = arg maxz1 F̃ (z1, q2), or equivalently H 1(r1(q2), q2), is 
decreasing in q2, so that r1(q2) is quasi-increasing. To this end, a sufficient condition is that 
F̃ (z1, q2) has decreasing differences in (z1, q2), or

h1
2(z1, q2) + z1h

1
12(z1, q2) < 0 (20)

Using the simple formulas that relate the partial derivatives of a function and its parametric 
inverse (11) a first time, it is easy to see that (20) is equivalent to

−H 1
2 (p1, q2)

H 1
1 (p1, q2)

+ H 1(p1, q2)[
H 1

1 (p1, q2)
]3

[H 1
2 (p1, q2)H

1
1 (p1, q2) − H 1

12(p1, q2)H
1
1 (p1, q2)] < 0

which via (11) is in turn equivalent to (17) upon simplification.
As for firm 2, to show continuity of r2(p1), (19) implies that �2

B(p1, p2) is strictly quasi-
concave in p2 (Caplin and Nalebuff, 1991). Since G(p1, q2) is obtained from �2

B(p1, p2) via a 
strictly monotonic transformation of firm 2’s action, this implies that G(p1, q2) is strictly quasi-
concave in q2. Therefore, r2(p1) is a continuous function.

With the change of decision variable z2 = H 2(p1, q2) for firm 2, a similar two-step procedure 
as for firm 1 above show that r2(p1) is increasing if (18) holds.

The existence of PSNE follows from our basic existence result (Theorem 15). �
For a good understanding of the result, we now interpret the specific role played by each 

of the assumptions in familiar contexts, and then relate this Proposition to known results on 
the existence of PSNEs in the two standard oligopolies. Condition (17) is known to make the 
payoff of firm 1 in the standard Cournot game submodular, and thus firm 1’s reaction curve 
decreasing. Condition (18) is known to make the payoff of firm 2 in the standard Bertrand game 
supermodular, and thus firm 2’s reaction curve increasing. It follows that the three assumptions 
are quite natural since Cournot and Bertrand duopolies are typically games of strategic substitutes 
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and complements respectively. Finally, (19) guarantees the quasi-concavity of firm 2’s payoff in 
own price in the Bertrand game.

Significantly, it turns out that these familiar structural conditions on the two standard 
duopolies also constitute minimal sufficient conditions to make the price-quantity duopoly en-
joy strategic quasi-complementarities and thus possess PSNEs according to the results of the 
present paper. It follows that the basic structure imposed by the approach to PSNE existence in 
the present paper is precisely as natural for the hybrid duopoly at hand as the familiar strate-
gic complementarity and substitutability properties are to the standard (differentiated-product) 
Bertrand and Cournot duopolies respectively. This duality between pseudo-complementarities in 
hybrid duopoly on the one hand and strategic complementarity in Bertrand duopoly and substi-
tutability in Cournot duopoly on the other is a novel insight of independent interest for oligopoly 
theory.

4.3. Bertrand competition with increasing returns for one firm

Consider a Bertrand duopoly with differentiated substitute products wherein firms 1 and 2
choose prices x and y (in a price set [0, p]) and face a demand system (D1, D2) for their prod-
ucts.

Assume Di
i < 0 (Law of Demand) and Di

j > 0, i, j = 1, 2, i �= j (goods are substitutes). With 
C1(·) and C2(y) = c2y denoting the firms’ cost functions, the profit function of firms 1 and 2 are

F(x, y) = xD1(x, y) − C1[D1(x, y)]
and

G(x,y) = (y − c2)D
2(x, y).

Using insights from supermodular games, Vives (1990) and Milgrom and Shannon (1994)
derive sufficient conditions for the existence of PSNE via the strategic complementarity of the 
game.19 Alternatively, for the classical approach using Brouwer’s fixed point theorem, sufficient 
conditions for continuous reaction curves are well-known (e.g., Caplin and Nalebuff, 1991 or 
Vives, 1999). Both approaches require a convex cost function (or decreasing returns to scale) for 
both firms. In fact, with (at least one) general concave cost function, the above approaches do 
not extend, and thus, not surprisingly, no existence result is known so far. We provide the first 
such result, which imposes no restriction on one firm’s cost function, so it may well be concave 
(locally or globally).

Assumptions

(A1) (i) D2(x, y) is log-submodular (i.e., D2D2
12 − D2

1D2
2 ≤ 0)

(ii) 1
D2(x,y)

is strictly convex in x for each y, or D2(x, y)D2
11(x, y) − 2[D2

1(x, y)]2 < 0, 
∀(x, y).

(A2) D1
2(D1

1)2 − D1
[
D1

1D1
12 − D1

2D1
11

]
> 0 for all (x, y).

Assumption (A1) is well known to yield a reaction curve that is downward-sloping (part i) 
and continuous (part ii), as seen in the proof. (A1) (i) is quite restrictive, as it requires D2

12 to be 

19 For the case of price competition with homogeneous goods, see Prokopovych and Yannelis (2017).
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strongly negative.20 However, given the paucity of existence results under increasing returns in 
oligopoly in general, one would not expect a high level of generality.

The new assumption is (A2). It clearly imposes a very mild restriction on the demand function. 
Indeed, the third term is always negative, and the first term has a high tendency for a negative 
sign. In addition, it is sufficient (but not necessary) for (A2) to hold to have D1

2D
1
11 −D1

1D1
12 < 0. 

The latter is equivalent to D1
1/D

1
2 being decreasing in x, which is a very general condition.

Importantly, the next existence result imposes no assumptions at all on firm 1’s cost function.

Proposition 23. Under Assumptions (A1)–(A2), the Bertrand game has a PSNE.

Proof. For firm 2, by Assumption (A1)(ii), G(x, y) is strictly quasi-concave in y for each x, and 
thus the reaction correspondence f (y) of firm 2 is a continuous function (Caplin and Nalebuff, 
1991). In addition, logG(x, y) = log(y − c2) + logD2(x, y) so (A1(i)) implies that logG(x, y)

is supermodular, so the reaction curve r2(x) is decreasing (Milgrom and Shannon, 1994). For 
firm 1, the fact that (A2) implies that the reaction curve r1(y) is quasi-decreasing was already 
proved in Example 8. Existence of PSNE then follows from Theorem 16. �

A noteworthy point is that this existence result imposes no restrictions at all on the cost 
function of firm 1 (other than continuity). Therefore, a key implication of this result is that a 
quasi-decreasing reaction curve is a natural property for a Bertrand firm when its cost function 
has increasing returns to scale (even strong ones), either in a local or a global sense. In contrast, 
in such cases, in general, the other two common properties, upward-monotonicity and continuity, 
may easily fail to hold.

5. Conclusion

By building on an intersection point theorem due to Tarski (1955), the main result of this 
paper demonstrates that a pure-strategy Nash equilibrium exists in two-player games when one 
reaction curve is continuous and increasing and the other has no downward jumps (though it 
may well have upward jumps). We elaborate in some detail on functions with the latter property, 
called quasi-increasing in Tarski (1955), by deriving a number of results on natural operations 
involving such functions. In particular, these results include sufficient conditions on an objective 
function for quasi-increasing functions to arise as argmax’s of parametric optimization prob-
lems. While this is obtained via from the standard case via a simple change of variable, it allows 
for non-monotone comparative statics. Some novel equilibrium uniqueness results are proved, 
which rely on a local (instead of the common global) contraction property, and require quasi-
increasingness instead of continuity of best responses. The special case of symmetric n-player 
games is also covered, thus unifying some existing results dealing mostly with Cournot oligopoly.

In an important part of the paper, we argue that our results have a promising scope of applica-
tion for a wide variety of economic models, including a growth model with increasing returns, a 
hybrid duopoly model (of price and quantity competition), and a Bertrand model with increasing 

20 One example of a demand function satisfying this assumptions is (the verification details are left out)

D2(x, y) = 1

(1 + y)2
+ (1 + x)e−y .
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returns for one firm. We illustrate in elementary ways all the various steps needed to actually ap-
ply our results for each of these models, tacitly establishing that strategic quasi-complementarity 
(or a quasi-increasing reaction curve) forms a convenient relaxation of strategic complementarity, 
and can arise naturally in well-known economic models.

As can be illustrated with other examples, the present results also apply in various models 
for which they require alternative sufficient conditions on the primitives that are not nested with 
known conditions from the theory of supermodular games. For instance, one can easily invoke 
our results on the standard Cournot and Bertrand models with differentiated products and obtain 
sufficient conditions on demand and costs that are not nested with existing ones, despite the 
extensive literature on these models (this is available from the authors upon request).

Another class of games for which our results would be relevant includes some of the models 
proposed by Monaco and Sabarwal (2016) as games with strategic complements for one player 
and strategic substitutes for the other player. One such example is the inspector-inspectee class 
of games studied by Leshem and Tabbach (2012), where the structural asymmetry between the 
properties of the reaction curves needed here holds in a natural way. Finally, our results may be 
used to investigate connections between stability of fixed points and comparative statics (e.g., 
Echenique, 2002).

Appendix A. Missing proofs

This appendix provides all the proofs that were not given in the main text, in the chronological 
order in which the associated results appear in the text.

Proof of Proposition 2. The proofs of (i)–(ii) are straightforward. To prove (iii), as f is quasi-
increasing, ∀x ∈ X,

lim sup
y↑x

f (y) � f (x) � lim inf
y↓x

f (y).

Since g is continuous and increasing,

lim sup
y↑x

g (f (y)) = g

(
lim sup

y↑x

f (y)

)
� g (f (x)) � g

(
lim inf

y↓x
f (y)

)
= lim inf

y↓x
g (f (y)) .

Therefore, g ◦ f is quasi-increasing. Similarly,

lim sup
y↑x

f (g(y)) � f

(
lim sup

y↑x

g(y)

)
= f (g(x)) = f

(
lim inf

y↓x
g(y)

)
� lim inf

y↓x
f (g(y)) .

Thus, f ◦ g is quasi-increasing.
To prove (iv), let f and g be quasi-increasing functions. Using the fact that (a) lim infy↑xλf (x)

= λ lim infy↑x f (x) and that a similar property holds for lim sup, and (b) the subadditivity of the 
lim sup operation and the superadditivity of the lim inf operation, we have:

lim sup
y↑x

(λf (y) + g(y)) � λ lim sup
y↑x

f (y) + lim sup
y↑x

g(y) � λf (x) + g(x),

and

lim inf
y↓x

(λf (y) + g(y)) � λ lim inf
y↓x

f (y) + lim inf
y↓x

g(y) � λf (x) + g(x).

This establishes (vi). �
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Proof of Lemma 5. (a) Let {yn}n∈N be such that yn ↑ x and f (yn) → lim supy↑x f (y). Since 
yn ↑ x and r is increasing, r(y1) � r(yn) � r(x). Since r is increasing and {yn}n∈N is an in-
creasing sequence, {r(yn)}n∈N converges, so that r(yn) → r̄ � r(x). Since β is continuous, 
f (yn) = β(r(yn), yn) → β(r̄, x) and since β is increasing in its first coordinate, β(r̄, x) �
β(r(x), x) = f (x), that is, lim supy↑x f (y) � f (x).

Taking {yn}n∈N to be such that yn ↓ x and f (yn) → lim infy↓x f (y) and repeating the same 
arguments, we conclude that lim infy↓x f (y) � f (x). Thus, f is quasi-increasing.

(b) For any y′ > y, since β is increasing in its first argument and r is increasing, we have

f (y′) − f (y)

y′ − y
= β(r(y′), y′) − β(r(y), y)

y′ − y
� β(r(y), y′) − β(r(y), y)

y′ − y
� K.

Hence f is K-lower-Lipschitz.
(c) Since β is continuously differentiable in s for each x, and Y and X are compact, ∂β/∂y

is uniformly bounded. Hence β is lower-Lipschitz in y for each x. The result follows from 
part (b). �

The following result will be useful in the proof of Proposition 13.

Lemma 24. Assume that f : [a, b] → [a, b] satisfies (14) and x̄ ∈ [a, b] is a fixed point of f . 
Then if y ∈ (x̄, b] is sufficiently close to x̄, f (y) < y. Also if y ∈ [a, x̄) is sufficiently close to x̄, 
f (y) > y.

Proof. Let x̄ be a fixed point of f . Because of (14), there is a neighborhood U of x̄ such that 
y ∈ U ∩ ([a, b] \ {x̄}) =⇒ f (y)−x̄

y−x̄
< 1. Then if y ∈ U ∩ (x̄, b], f (y)−x̄

y−x̄
< 1 implies f (y) < y. 

Similarly, if y ∈ U ∩ [a, x̄), f (y)−x̄
y−x̄

< 1 implies f (y) > y. �
Proof of Proposition 13. (a) Suppose that x̄, ȳ ∈ [a, b] are both fixed points of f , with (say) 
x̄ < ȳ. Using Lemma 24 twice, we can pick y1, y2 ∈ (x̄, ȳ) such that y1 < y2 and f (y1) < y1 and 
f (y2) > y2.

Define the function g(y) = f (y) − y on [y1, y2]. Since f is quasi-decreasing and y �→ (−y)

is continuous, hence quasi-decreasing, g is quasi-decreasing by Proposition 2(iv) adapted to 
quasi-decreasing functions. Moreover, g(y1) < 0 < g(y2). We can apply Tarski’s intersection 
point theorem (Theorem 3) to the function g thus defined and the constant function c(y) = 0, ∀y, 
which is continuous and thus quasi-increasing. By that Theorem, the supremum of {y ∈ [y1, y2] :
0 � g(y)} is the largest element of {y ∈ [y1, y2] : 0 = g(y)}. Denote by ẙ ∈ [y1, y2] this largest 
element of {y ∈ [y1, y2] : 0 = g(y)}, that is, ẙ is the largest fixed point of f . It is clear that ẙ < y2, 
since g(y2) > 0 and g(ẙ) = 0.

Using again Lemma 24, we can find ŷ ∈ (ẙ, y2) such that f (ŷ) < ŷ. Defining as before ĝ :
[ŷ, y2] → R by ĝ(y) = f (y) − y, we see that it is a quasi-decreasing function satisfying the 
assumptions of Theorem 3. Therefore, there exists ỹ ∈ (ŷ, y2), such that 0 = ĝ(ỹ) = f (ỹ) − ỹ, 
that is, ỹ ∈ [y1, y2] is a fixed point of f and ỹ > ŷ > ẙ, which contradicts the fact that ẙ is the 
highest fixed point of f in [y1, y2]. This contradiction establishes the claim of part (a).

(b) Towards eventual contradiction, assume instead that the correspondence f has (at least) 
two distinct fixed points; call them x1 ∈ f (x1) and x2 ∈ f (x2). Define a (single-valued) selection 
f̂ of f such that f̂ (x1) = x1, f̂ (x2) = x2 and f̂ (x) is arbitrary for all the other x’s. Then, 
by assumption, f̂ satisfies the assumptions in (a). Therefore, f̂ has at most one fixed point by 
part (a), a contradiction. This proves part (b). �
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Proof of uniqueness of PSNE in Example 21. Consider an arbitrary (single-valued) selection 
of f , denoted f̂ , and any candidate fixed point y0 = f̂ (y0). The proof is divided into two separate 
cases.

Case 1. Assume first that f̂ is neither continuous from the left nor from the right at y0. Since 
f̂ is quasi-decreasing, it must have a downward jump from the left and from the right at y0. In 
such a case, the fact that (14) holds at x = y0 follows directly.

Case 2. Assume that f̂ is one-sided continuous (say from the right) at y0. Since D(f̂ (y), y)

is increasing in y, it is differentiable a.e. in y (with respect to Lebesgue measure). Taking any 
sequence yn ↘ y0 such that D(f̂ (y), y) is differentiable at yn for each n, one therefore has

D1(f̂ (yn), yn)f̂
′(yn) + D2(f̂ (yn), yn) � 0 or f ′(yn) � −D2(f̂ (yn), yn)

D1(f̂ (yn), yn)
.

Taking limsup on both sides yields (in view of the fact that f (yn) −→ f (y0) and (16))

lim sup
n→∞

f̂ ′(yn)� −D2(y0, y0)

D1(y0, y0)
< 1. (21)

For any sequence yn ↘ y0, due to the downward jump at y0, (14) clearly holds.
A similar argument with yn ↗ y0 works if f̂ is left-continuous at y0 (and is thus left out). �
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