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Abstract

This paper reconsiders the well-known comparison of equilibrium entry levels into a Cournot indus-
try under free entry, second best (control of entry but not production) and first best (control of entry and 
production). Allowing for the possibility of limited increasing returns to scale in production, this paper gen-
eralizes the conclusion of Mankiw and Whinston (1986) [10], that under business-stealing competition, free 
entry yields more firms than the second-best solution. We also show that under-entry always holds under 
business-enhancing competition. This confirms the general intuition given by Mankiw and Whinston, which 
does not rely on the convexity of the cost function. The same result is shown to extend (at a similar level of 
generality) to the comparison between free entry and the first best socially optimal solution, irrespective of 
business-stealing. Three illustrative examples are provided, one showing that the second-best and free entry 
solutions may actually coincide.
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1. Introduction

In a drastic reversal of a long-standing belief, von Weizsacker [23] proved that free entry into 
a Cournot industry with identical firms, linear demand, quadratic production costs and fixed en-
try cost leads to excessive entry relative to a first-best socially optimal solution. He postulated an 
omniscient social planner who can dictate both the number of firms to enter the industry and their 
market conduct or production levels. Perry [15] derived the same conclusion but with a second-
best social planner, one that decides the number of entering firms but not their market conduct. 
Suzumura and Kiyono [19] address both comparisons–free entry versus first and second-best 
entry–with competition based on conjectural variations (including Cournot as a special case), but 
no fixed (entry) costs. With the latter proviso, they extend both von Weizsacker’s first-best and 
Perry’s second-best results. Mankiw and Whinston [10], or MW, reconsider Perry’s question in a 
general setting encompassing Cournot competition (among others) with convex costs and a fixed 
entry cost, and provide a rigorous analysis accounting for the integer nature of the number of 
firms. Nachbar et al. [13] consider the effect of sunk costs on the welfare comparison at hand.1

Finally, Amir and Lambson [4] offer an extension to a form of dynamic competition.
The present paper compares free entry into a symmetric Cournot industry with both first-best 

and second-best socially optimal entry. The main result is that free entry leads to an excessive 
(resp., insufficient) number of firms relative to second-best planning if and only if a “business 
stealing” (resp., “business enhancing”) effect is present, i.e. each firm’s Cournot equilibrium out-
put contracts (resp., expands) as more firms enter the market. When holding globally, these two 
effects correspond respectively to the properties of strategic substitutes and strategic comple-
ments of Cournot outputs. This result is obtained under the most general assumption that guar-
antees the existence of symmetric pure-strategy Cournot equilibrium (based on supermodularity 
conditions), namely that price or inverse demand falls faster than marginal cost in a global sense.2

The second result is that, relative to first-best planning, excessive entry prevails, irrespective 
of strategic substitutes/complements. For this case, the relevant separation is also into two cases, 
but depending on whether the cost function is convex or concave. Indeed, the first best number 
of firms is always one in the latter case, making it a special case for the issue of entry.

With respect to MW’s elegant analysis of the second-best comparison, given Cournot com-
petition in the second stage of the game, the present paper adds by establishing that business 
stealing is essentially necessary as well as sufficient, by not requiring that production costs be 
convex, or that industry output be monotone in the number of firms. By specifying a Cournot 
framework at the outset, on the one hand, the present paper forsakes relevant generality in mod-
eling the structure of competition, but on the other hand gains in clarity in allowing assumptions 
to be placed directly on the primitives of the oligopoly model. The latter step is guided by the 
requirement that the same assumptions must in the first place guarantee existence of a Cournot 
equilibrium. With that in mind, the basic strategy underlying the present paper is that MW’s 
result ought to be investigated with as much generality as possible, subject to the conditions 
for existence. One advantage is that attention need not be restricted a priori to symmetric market 
equilibria. Rather, asymmetric equilibria are essentially precluded by our basic assumptions. Fur-
thermore, this approach also links together all the important underlying issues that are relevant to 

1 In contrast to the present literature review, past literature on this topic has not always distinguished whether a first 
best or a second best criterion is used, despite the obvious relevance of the issue.

2 This translates into a reaction correspondence will all slopes above −1: A firm responds in such a way that total 
output rises whenever rivals’ total output rises, a property consistent with both strategic substitutes and complements.
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the main question at hand, namely existence, multiplicity of equilibrium and comparative statics 
as the number of firms changes. Aside from these differences, the present work has been directly 
inspired by MW’s rigorous analysis, in particular in dealing with the integer constraint. Relative 
to Suzumura and Kiyono [19], the present set-up is more general for both comparisons as far as 
the Cournot model is concerned (conjectural variations are not considered here).

Since a key part of the added generality in the present analysis consists of allowing for increas-
ing returns in the form of decreasing marginal cost (as opposed to fixed costs), it is important 
to note that the prevalence of this feature has been documented for manufacturing industries in 
several empirical studies: See Friedlaender et al. [9], Ramey [16], and Diewert and Wales [5].

The intuition behind the second-best comparison, as laid out in MW, is elementary. A po-
tential entrant does not take into account the business-stealing externality it confers on rivals in 
making its entry decision. A social planner internalizes this externality and allows one extra firm 
only if its profit exceeds the social value of the output contraction that this would cause for other 
firms. Thus, entry is always more desirable privately than socially. Given the present paper’s re-
liance on necessary and sufficient conditions, an analogous interpretation applies directly to the 
converse result that under a business-enhancing effect, free entry yields too few firms relative to 
the second-best solution. Thus, our analysis fully confirms MW’s claim that the business-stealing 
effect is the key assumption behind the excess-entry result. In a Cournot oligopoly, the business-
stealing effect has a much broader scope than the business-enhancing effect. In particular, the 
latter can hold globally only in the absence of variable costs (for details, see Amir [1]).

As to the first-best comparison, the intuition and proof are quite elementary, even though the 
second stage is not the same as for the free entry scenario. Under first-best, for a given number of 
firms, per-firm output is chosen to equate price and marginal cost, and is therefore always larger 
than under Cournot. Per-firm profit is thus zero, and hence lower than under Cournot. It follows 
that if the first best number of firms were to engage in Cournot competition, per firm profit would 
be positive, thus making further entry (beyond the first-best level) profitable.

Sections 2 and 3 deal with the second-best and first-best comparisons respectively. Section 4
provides an illustration of interest and Section 5 briefly concludes. Appendix A collects the 
proofs.

2. Free versus second-best entry

We begin by laying out the basic set-up and notation for the Cournot model and the two 
entry scenarios. A symmetric Cournot oligopoly is described by a triplet (P, C, n) where 
P : R+ → R+ is the inverse demand function, C : R+ → R+ is the (common) cost function, 
and n is the number of firms. The average cost curve is defined by A(x) = C(x)/x if x > 0 and 
A(0) = C ′(0).

Let x denote the output of the firm under consideration, y the total output of its (n − 1) rivals, 
and z industry output (z = x + y). Let xn, yn, zn denote the symmetric n-firm equilibrium sets 
for those variables, and πn and Wn the corresponding per-firm profit and social welfare.

The profit function is Π(x, y) = xP (x +y) −C(x), or with total output z = x +y as decision,

Π̃(z, y) = Π(z − y, y) = (z − y)P (z) − C(z − y).

Let �(z, y) denote the cross-partial derivative of Π̃ with respect to z and y, i.e.,

�(z, y) � −P ′(z) + C′′(z − y)

Clearly, both Π̃ and � are defined on the lattice ϕ ∧= {(z, y) : y ≥ 0, z ≥ y}.
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We assume throughout that (i) P(·) and C(·) are smooth, P ′(·) < 0 and C′(·) ≥ 0, (ii) P(x) <
A(x) for all x > x̂, for some ̂x > 0, and (iii) π1 > K , where K is the market entry cost per firm.3

Here, (ii) implies that a firm’s reaction curve r(y) � arg maxx Π(x, y) is eventually zero, so 
that a firm’s effective output set is bounded. (iii) says that at least one firm can survive in the 
market.

The free entry number of firms, N , is defined via (the subgame-perfect equilibria of) the 
standard two-stage entry game (see e.g., MW), as the integer solution to

πN ≥ 0 and πN+1 < 0.

The second-best number of firms, N∗, is defined as usual as the integer solution to

N∗ � arg max
n

{Wn − nK}.
For a rigorous analysis of the issue at hand, it is critical to include provisions for existence of 

(pure-strategy) Cournot equilibrium. Our guiding principle is that the relevant comparisons will 
be established under each set of minimal sufficient conditions that is known to ensure existence of 
Cournot equilibrium. Accordingly, the presentation is divided into two separate cases defined by 
� > 0 and � < 0. For each of these cases, we first provide a summary of known useful properties 
of Cournot equilibrium (for details and proofs, see Amir [1] and Amir and Lambson [3]).4

2.1. The case � > 0

When � > 0 globally, the case of convex costs is covered, but so is the case of mildly increas-
ing returns to scale, as well as hybrids of these two cases. This condition is thus very general.

Below, we shall invoke (sometimes tacitly) the following known facts:
(i) The slopes of r(·) are all > −1 (so r has no downward jumps).5 From this slope property 
alone (no quasi-concavity needed here), symmetric Cournot equilibria (and no asymmetric ones) 
exist.
(ii) The minimal (resp., maximal) equilibrium is Pareto-dominant for firms (resp., consumers). 
Thus these equilibria satisfy one of the most commonly used selection criteria. In addition, they 
possess well-defined and intuitive comparative statics properties, namely pn and πn always de-
crease in n.
(iii) For a non-extremal, locally stable equilibrium (for Cournot dynamics) for all n ∈ {n1, ..., nt }, 
t > 1, pn and πn decrease in n on {n1, ..., nt }, if the equilibrium set has the same cardinality for 
each n in {n1, ..., nt }. The latter condition is needed to identify the equilibrium unambiguously.6

3 Our notation is different from MW’s in that πn and Wn do not include the entry cost K here.
4 Several arguments and background results of this paper rely on insights from the theory of supermodular games 

(Topkis [21], Vives [24], Milgrom and Roberts [11], Milgrom and Shannon [12], Amir [2], and others). We refer to the 
book/survey treatments in Topkis [22] or Vives [25,26] for the relevant definitions and results. On Cournot oligopoly, see 
[1,8,14,17,18].

5 Throughout, “larger” and “increasing” refer to the weak notions. Else the qualifier “strictly” is added.
6 Without this one-to-one correspondence between equilibria, one cannot necessarily make meaningful statements for 

non-extremal equilibria. For instance, the middle of three equilibria for n = n1 need not be comparable to one of the 
middle three equilibria out of five for n = n1 + 1. When the parameter of interest is a real number, further restrictions 
will be needed to preclude non-generic features such as equilibria occuring at tangency or discontinuity points of r . The 
two extremal equilibria are free of all these complications. In contrast, Cournot-unstable equilibria typically satisfy the 
opposite (thus counter-intuitive) comparative statics properties. If r is continuous, the stable and unstable equilibria will 
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Below, we call an equilibrium regular as n varies if it is either an extremal equilibrium or it 
satisfies all the assumptions in (iii), and thus has the given intuitive comparative statics properties.

Proposition 1. Let � > 0 globally. For a common regular Cournot equilibrium for both games,
(a) If xN∗−1 ≥ xN∗ , then N ≥ N∗ − 1.
(b) If xN∗+1 ≥ xN∗ , then N ≤ N∗.

Alternatively, one may state a global version of this result by replacing the condition 
xN∗−1 ≥ xN∗ (resp., xN∗+1 ≥ xN∗ ) by a global strategic substitutes (resp., complements) as-
sumption. Using the local conditions as stated has the advantage of preserving this key result 
even when the game is neither of strategic substitutes nor of strategic complements in a global 
sense, both possibilities being fully consistent with the key assumption that � > 0 (as is easily 
confirmed in examples).

Going back to primitives, the Cournot game is globally of strategic substitutes (resp., com-
plements) if P(·) is log-concave (resp., log-convex and C(·) = 0). In the latter case, the local 
condition xN∗+1 ≥ xN∗ becomes even more attractive, since it may hold in the presence of costs. 
Indeed, xN∗+1 ≥ xN∗ is implied by strategic complementarity only on [0, xN∗+1], for which a 
sufficient condition on primitives is, say with linear costs cx, that [P(·) − c] is log-convex on 
[0, zN∗+1], or[

P(z) − c
]
P ′′(z) − [

P ′]2
(z) ≥ 0 for all z ∈ [0, zN∗+1]. (1)

For a log-convex P(·), (1) is more likely to hold the smaller zN∗+1 is, but (1) cannot hold for 
all z, unless c = 0 (to see this, take z ≥ P −1(c) in (1)). In other words, global strategic com-
plementarity is not consistent with the presence of non-trivial costs. For more on this point, see 
Amir [1].

Parts (a) and (b) together essentially provide a full characterization of the comparison between 
the number of firms under the two regimes. This characterization can be succinctly phrased as 
follows: Free entry leads to a socially excessive (resp., insufficient) number of firms whenever 
a business-stealing (resp., business-enhancing) effect is present in the industry. This confirms 
the crucial role played by the nature of the externality an entering firm confers on the existing 
firms, which provided the main economic interpretation that MW associated with the under-entry 
result. Since the assumptions validating insufficient entry are far more restrictive, one naturally 
expects over-entry to constitute the norm for Cournot industries. Furthermore, since strategic 
complementarity cannot hold globally for Cournot competition in the presence of production 
costs, under-entry can only hold in a local sense, and typically for highly concentrated industries.

The following examples serve as illustrations of the new result of this section, namely Propo-
sition 1(b). Example 1 shows that when r is increasing (so xn is increasing in n), N can be much 
smaller than N∗, so the conventional view on entry may actually hold in a robust manner.7

Example 1. Let P(z) = 1
(z+1)5 and C(x) ≡ 0. The profit function is Π(x, y) = x

(x+y+1)5 .
Clearly, � > 0 here, and, for n ≤ 4, there exists a unique Cournot equilibrium with

tend to alternate, along with their respective comparative statics properties. For further discussion of these issues, see 
Amir and Lambson [3] and Echenique [6].

7 In all the examples in Perry [15] purported to disprove that N ≥ N∗ , Proposition 1(a) actually holds. In other words, 
at worst he had N = N∗ − 1. Interestingly then, this is the first example in the entry literature that actually confirms (the 
strict version of) the conventional wisdom, that free entry can lead to insufficient entry.
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xn = 1

5 − n
, πn = (5 − n)4

55
, and Wn = 1

4

[
1 − (5 − n)4

54

]
, for n ≤ 4.

Upon computation, xn and Wn increase, and πn decreases, in n. As is easily verified,

W1 = 0.1476, W2 = 0.2176, W3 = 0.2436, W4 = 0.2496

and

π1 = 0.08192, π2 = 0.02592, π3 = 0.00512, π4 = 0.00032.

It is easy to see that for all K , the planner lets in at least as many firms as free entry, and for 
some K , many more firms than free entry would. In particular, for K = 0.026, we obtain N = 1
and N∗ = 4. Hence, Proposition 1(b) holds: The conventional wisdom on insufficient entry can 
hold in a global sense under restrictive conditions (a globally upward-sloping reaction curve).

The qualitative features of this example are robust to the inclusion of costs, say C(x) = cx, 
as long as c is small enough that the game retains strategic complementarity over [0, xN∗+1], 
and K takes values that are compatible with this interval being the relevant range.8 However, the 
associated computations become much more cumbersome. �

The second example is an affirmative reply to the question, can free entry ever coincide with 
the second-best outcome? This is motivated by the observation that exponential demand is log-
linear, thus at the same time log-concave and log-convex, so both parts of Proposition 1 apply.

Example 2. Let P(z) = ae−z, a > 0, and C(x) ≡ 0. The profit function is Π(x, y) = axe−x−y .
The first order condition is (1 − x)e−x−y = 0, so r(y) ≡ 1 (i.e., 1 is a dominant strategy). 

Hence

xn = 1, zn = n, πn = ae−n, and N = loga/K, ∀K ∈ [0, ae−1).

The second-best problem is maxn{
∫ n

0 ae−t dt − nK}, or maxn{a(1 − e−n) − nK}, and thus

N∗ = loga/K = N.

Hence, for every K ∈ [0, ae−1), free entry yields the socially optimal number of firms.
It can be shown that this example is non-robust to the inclusion of non-zero costs, which 

would give rise to strict strategic substitutes and thus excess entry (no closed-form solutions are 
possible).

2.2. The case � < 0

When � < 0, production has strong scale economies, which is not typical of many industries.
Here, we shall make use of the following well known facts (Amir and Lambson [3]):

(i) The slopes of r(·) are all < −1, so the game is strongly of strategic substitutes.
(ii) As r may have downward jumps in this case, quasi-concavity of the profit function in own 
output is needed to guarantee existence of a unique symmetric Cournot equilibrium for each n.
(iii) This symmetric equilibrium possesses counter-intuitive comparative statics properties with 
respect to n (e.g., pn increases in n), though πn decreases in n.

8 With c > 0, the reaction curve is inverse U -shaped, and its argmax is a decreasing function of c (Amir [1]).
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When � < 0, there are also many asymmetric Cournot equilibria, each involving a subset 
m ≤ n − 1 of inactive firms (producing zero output), and the other n − m firms each producing 
xn−m (Amir and Lambson [3]). However, for the free entry problem, the only Cournot equilib-
rium selection consistent with subgame perfection is the unique symmetric equilibrium with all
entering firms active. Indeed, any inactive firm in the second stage would deviate in the first stage, 
i.e., not enter so as to save on its entry cost K > 0. For the planner’s problem, as social welfare 
is maximized by one firm, the solution is monopoly for all second-stage Cournot equilibrium 
selections (monopoly is the market structure that maximizes both consumer surplus and industry 
profits).

Proposition 2. Assume � < 0 and Π(·, y) is quasi-concave for each y. Then N ≥ N∗ = 1.
Furthermore, if K = 0, then N = +∞ and N∗ = 1.

This result is intuitive but the extreme over entry with zero (or small) entry costs is noteworthy.

3. Free vs. first-best entry

In the first-best situation, the social planner is assumed to be fully in charge of the industry at 
hand, setting both the industry concentration level and the conduct of the firms in the industry.9

Thus, his objective function is, with n denoting the number of firms and x the output per firm,

max

{
F(n,x) �

nx∫
0

P(t)dt − nC(x) − nK : n ≥ 1, x ≥ 0

}
. (2)

Let (N,x) be the global argmax in (2), under the constraint that n is an integer.
We also need to consider the subproblem of maximizing welfare with respect to per-firm 

output with n fixed. For each n, let xn denote the corresponding (first-best) per-firm output, or

xn � arg max

{ nx∫
0

P(t)dt − nC(x) − nK : x ≥ 0

}
. (3)

Let xn, yn, zn,pn, πn and Wn denote the same equilibrium quantities as before but now 
corresponding to a symmetric n-firm optimal outcome for the first-best solution.

Our first result provides a characterization of this solution for use below.

Lemma 3. Assume � > 0 globally. Then the first best solution satisfies the following:
(a) For each n, each firm produces more than at the corresponding Cournot equilibrium, or 
xn ≥ xn.
(b) For each n, each firm’s profit is lower than at the Cournot equilibrium, or πn ≤ πn.
(c) xn is decreasing in n.

Unlike the comparison between free entry and the second-best solution, the present compar-
ison is a priori complex due to fact that the first best planning problem is a static maximization 

9 While first-best social planning solutions are regularly investigated in various settings in industrial and public eco-
nomics, they remain useful more as benchmark ideals rather than outcomes of much practical significance.
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problem where the planner makes two simultaneous choices. However, since this is an optimiza-
tion problem (and not a strategic game) without uncertainty, the first-best welfare maximization 
problem may be equivalently converted into a two-stage sequential optimization problem where 
the planner chooses n in the first period and then x in the second period. Together with the con-
clusions of Lemma 3, this observation underlies the approach that we shall follow in making the 
comparison at hand.

We are now ready for the results on excess entry relative to a first best standard. We organize 
the results in two propositions, since the conclusions are sharply different. The first deals with the 
case of convex costs; the second case deals with concave costs and yields an extreme outcome.

Proposition 4. If C is strictly convex, then N ≥ N − 1.

The proof formalizes the simple intuition, in line with Lemma 3(b), that if the first-best num-
ber of firms were to engage in Cournot competition, they would make positive (as opposed to 
zero) profits, thereby inviting further entry. Hence free entry would lead to more firms than the 
first-best solution.

The integer constraint requires extra care (see proof). Finally, existence of Cournot equilib-
rium here follows from convexity of C (since � > 0), so quasi-concavity of profit is not needed.

For the case of concave costs, the result is fully intuitive (here, quasi-concavity is needed only 
to ensure existence of a symmetric Cournot equilibrium).

Proposition 5. If C is concave and Π(·, y) is strictly quasi-concave for each y, then N ≥ N = 1.
Furthermore, if K = 0, then N = +∞ and N = 1

Thus, the implications of these two intuitive results are clear-cut. In contrast to the second 
best case, business-enhancing competition is not enough to imply insufficient free entry relative 
to the first best criterion. In fact, insufficient free entry never happens in this case.

4. Extension: � not uni-signed

For the second-best criterion, the overall analysis has restricted attention to cases where either 
� > 0 or � < 0, both in a global sense. This is motivated both by the need to include provisions 
for the existence of Cournot equilibria and by the nature of the comparative statics of equilibria 
as n varies. Unfortunately, this leaves out potentially important cases where � does not have a 
globally uniform sign (due to the presence of local scale economies). For such cases, the present 
analysis need not apply a priori. For illustration, we provide one such insightful example.

Example 3. Let P(z) = 1
z+1 and C(x) = 1

2 log(x + 1). Then Π(x, y) = x
x+y+1 − 1

2 log(x + 1).

Here �(z, y) = 1
(z+1)2 − 1

2(z−y+1)2 changes signs on ϕ (so our results need not apply).

The reaction curve is given by the positive arc of the unit circle r(y) = √
1 − y2 for y ≤ 1.

Simple computations yield that (i) the (unique and symmetric) Cournot equilibrium has each 
firm producing xn = (n2 − 2n + 2)−1/2, and (ii) xn is decreasing in n, for all n. Social welfare is

Wn = log

(
n√

n2 − 2n + 2
+ 1

)
− n

2
log

(
1√

n2 − 2n + 2
+ 1

)
.

In particular, W1 = 1
2 log 2 = 0.34657, and W2 = log(

√
2 + 1) − log( 1

2

√
2 + 1) = 0.34657, so 

that W2 = W1 (exactly). In fact, Wn is single-peaked in n with a maximum at n � 1.36.
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Thus, with K = 0, N∗ = {1, 2}, i.e., a second-best social planner is indifferent between 
monopoly and duopoly as the optimal choice! In addition, it is easy to see that the free en-
try number is then N = ∞. Furthermore, simple computations lead to WN∗ = W1 = 0.34657, 
W∞ = 0.1931. Thus with costless entry, the size of the welfare loss due to free entry is 
0.34657 − 0.1931 = 0.15347, or 44%!

However, for any K > 0, we have N∗ = 1 (2 firms being suboptimal due to the double entry 
cost). Hence, as long as K ≤ π1, we know that N ≥ N∗. Excessive free entry thus obtains.

As to the first-best solution, one clearly has N = 1 (since A(·) is strictly decreasing in x) 
and x = +∞, for any K ≥ 0. Yet, one can have the free entry number of firms N be as large 
as desired (by taking K sufficiently small). In particular, with K = 0, N − N = ∞ and the 
(first-best) welfare loss due to free entry is also infinite (since, as is easily checked, W = ∞).

Here, excess entry leads to drastic welfare losses (relative to both first and second-best) be-
cause more competition leads each firm to produce less and thus at higher average cost (as C is 
concave).

5. Conclusion

This paper has provided a comprehensive and rigorous treatment of endogenous entry by 
comparing free entry with both first-best and second-best regulated entry, for Cournot markets. 
The analysis is conducted under general conditions (allowing for increasing returns to scale) that 
ensure the existence of Cournot equilibrium for the case of identical firms. The main results are as 
follows: (i) free entry results in an excessive number of firms relative to a second-best optimum 
essentially if and only if per-firm Cournot equilibrium output is decreasing in the number of 
firms (in the relevant range); and (ii) free entry results in an excessive number of firms relative to 
the first-best optimum in all cases. Along with insightful illustrative examples, these conclusions 
confirm unambiguously the critical importance of business-stealing versus business-enhancing 
assumptions; the possibility that the conventional view can hold under robust, though restrictive, 
conditions, and the irrelevance of the nature of the returns to scale in production in the general 
intuition given by MW for the second-best result. Due to the overall high level of generality, 
the two-way results for the second-best criterion, and the fact that both first and second best 
comparisons are covered, we hope that these results will also serve to unify the existing literature 
on entry for the case of Cournot markets.

Appendix A

This Appendix contains all the proofs of the results of this paper, given in order of appearance.

Proof of Proposition 1. We give separate proofs for Parts (a)–(b). As optimal monopoly profit 
π1 > K by assumption, at least one firm can survive in the market and therefore one clearly has 
N ≥ 1 and N∗ ≥ 1.
Part (a): Consider the same regular or extremal Cournot equilibrium (to ensure that πn is de-
creasing in n) for both the free entry and the second-best scenario. We show that πN∗−1 > K .

First, by the mean value theorem, there exists ̃x such that xN∗ ≤ x̃ ≤ xN∗−1 and

C(xN∗−1) − C(xN∗) = C′(̃x)(xN∗−1 − xN∗). (4)

By definition of N∗, WN∗ − N∗K ≥ WN∗−1 − (N∗ − 1)K , i.e.,
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zN∗∫
0

P(t)dt − N∗C(xN∗) − N∗K

≥
zN∗−1∫
0

P(t)dt − (
N∗ − 1

)
C(xN∗−1) − (

N∗ − 1
)
K. (5)

With πN∗−1 = xN∗−1P(zN∗−1) − C(xN∗−1), (5) can be rewritten as

πN∗−1 − K ≥ xN∗−1P(zN∗−1) −
zN∗∫

zN∗−1

P(t)dt − N∗[C(xN∗−1) − C(xN∗)
]
.

Using the fact that P is strictly decreasing,

πN∗−1 − K

> xN∗−1P(zN∗−1) − (zN∗ − zN∗−1)P (zN∗−1) − N∗[C(xN∗−1) − C(xN∗)
]

= xN∗−1P(zN∗−1) − (zN∗ − zN∗−1)P (zN∗−1) − N∗C′(̃x)(xN∗−1 − xN∗), by (4)

= N∗[P(zN∗−1) − C′(̃x )
]
(xN∗−1 − xN∗). (6)

Since � > 0, the correspondence r can have no slope ≤ −1 (see [2] or [7]), and hence no down-
ward jumps. Since, in addition, yN∗−1 ≤ yN∗ and xN∗ = r(yN∗) < xN∗−1 = r(yN∗−1), we claim 
that r is onto (or surjective) over the subset [xN∗, xN∗−1] of its range, in the sense that, given ̃x
with xN∗ ≤ x̃ ≤ xN∗−1, there exists (at least one) ̃y such that r(ỹ) = x̃. Moreover, we must have 
yN∗−1 ≤ ỹ ≤ yN∗ . This follows from a direct application of Tarski’s intersection point theorem 
(Tarski [20] 290), the two maps being the horizontal (or constant) map x = x̃ and (a selection 
of) r , both taken on the common domain [yN∗−1, yN∗ ]. Indeed, the map x = x̃ is higher than r
at yN∗−1 but lower at yN∗ . The map x = x̃ is continuous (thus quasi-decreasing, see Tarski [20]) 
and r is quasi-increasing. Hence, the two maps must intersect at a point, ̃y, as described above.

Since the slope property of r is equivalent to r(y) + y being increasing in y, it follows 
from the fact yN∗−1 ≤ ỹ that zN∗−1 = yN∗−1 + xN∗−1 = yN∗−1 + r(yN∗−1) ≤ ỹ + r(ỹ), so 
that P(zN∗−1) ≥ P [̃y + r(ỹ)]. Also, we must have P [̃y + r(ỹ)] ≥ C′(̃x) since x̃ ∈ r(ỹ). 
Hence, P(zN∗−1) ≥ C′(̃x). Since (by assumption) xN∗−1 − xN∗ ≥ 0, we conclude from (6) that 
πN∗−1 > K . Since πn is decreasing in n (Amir and Lambson [3]), it follows that N ≥ N∗−1. �
Part (b): Assume xN∗ ≤ xN∗+1. Given any regular or extremal Cournot equilibrium, we show 
that πN∗+1 < K . We begin the proof with two preliminary observations for use below.

First, since P is strictly decreasing, we have

xN∗+1P(zN∗+1) −
(N∗+1)xN∗+1∫

0

P(t)dt < −
N∗xN∗+1∫

0

P(t)dt. (7)

Second, the fact that � > 0 here implies that the function Vn(x) �
∫ nx

0 P(t)dt − nC(x) is con-
cave in x (for fixed n), since V ′′

n (x) = n[nP ′(nx) − C′′(x)] < 0. Hence, for any x ≥ x′,[ nx∫
0

P(t)dt − nC(x)

]
−

[ nx′∫
0

P(t)dt − nC
(
x′)] ≥ n

[
P(nx) − C′(x)

](
x − x′), (8)

where use is made of the fact that V ′
n(x) = n[P(nx) − C′(x)].
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By definition of N∗, WN∗ − N∗K ≥ WN∗+1 − (N∗ + 1)K , i.e.,

zN∗∫
0

P(t)dt − N∗C(xN∗) − N∗K

≥
zN∗+1∫
0

P(t)dt − (
N∗ + 1

)
C(xN∗+1) − (

N∗ + 1
)
K. (9)

Adding πN∗+1 = xN∗+1P(zN∗+1) − C(xN∗+1) to both sides, (9) can be rewritten as

πN∗+1 − K

≤ xN∗+1P(zN∗+1) −
zN∗+1∫
0

P(t)dt + N∗C(xN∗+1) +
zN∗∫
0

P(t)dt − N∗C(xN∗)

< −
{[ N∗xN∗+1∫

0

P(t)dt − N∗C(xN∗+1)

]
−

[ N∗xN∗∫
0

P(t)dt − N∗C(xN∗)

]}
, by (7)

= −{
VN∗(xN∗+1) − VN∗(xN∗)

}
≤ −N∗[P (

N∗xN∗+1
) − C′(xN∗+1)

]
(xN∗+1 − xN∗), by (8) since xN∗+1 ≥ xN∗

≤ −N∗[P(zN∗+1) − C′(xN∗+1)
]
(xN∗+1 − xN∗)

as zN∗+1 = (
N∗ + 1

)
xN∗+1 ≥ N∗xN∗+1

≤ 0, (10)

where the last inequality follows from the facts that P(zN∗+1) ≥ C′(xN∗+1) and xN∗+1 ≥ xN∗ . 
Hence, πN∗+1 < K . Since πn is decreasing in n (Amir and Lambson [3]), the result follows. �
Proof of Proposition 2. Since K ≤ π1, N ≥ 1. Both consumer and producer surpluses are max-
imized by N∗ = 1.

That N = +∞ when K = 0 follows from the continuity of the reaction function r(·). �
Proof of Lemma 3. (a) We show that xn ≥ xn, for every n ≥ 1.

Recall that the planner’s objective is

max

{
F(n,x) �

nx∫
0

P(t)dt − nC(x) − nK : n ≥ 1, x ≥ 0

}
. (11)

The first order conditions for this maximization are the familiar relationships

∂F (n, x)

∂x
= n

[
P(nx) − C′(x)

] = 0 (12)

and (this is stated here for later use)

∂F (n, x) = xP (nx) − C(x) − K = 0. (13)

∂n
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We first show that F is strictly concave in x. Taking d
dx

once more in (12), we see that 
∂2F(n, x)/∂x2 = n[nP ′(nx) − C′′(x)] < 0 for all x ≥ 0, since � > 0. Hence, for fixed n, F is 
strictly concave in x. Evaluating (12) at the Cournot equilibrium output, we have ∂F (n, xn)/∂x =
n[P(nxn) − C′(xn)] > 0, so that we can conclude from (12) that xn > xn.

(b) We show that πn ≥ πn, for every n ≥ 1, where πn denote the per-firm profit resulting 
from (2), i.e. πn � xn[P(nxn) − C(xn)]. Consider

πn = xn

[
P(nxn)

] − C(xn)

≥ xnP
[
xn + (n − 1)xn

] − C(xn), by the Cournot property

> xnP
[
xn + (n − 1)xn

] − C(xn), since xn > xn

= xnP
(
nxn − C(xn)

)
= πn.

(c) We show that xn is decreasing in n. To this end, we show that the argmax in (11) satisfies 
the strict dual single-crossing property in (x; n), i.e. that for any x′ > x and n′ > n,[ nx∫

0

P(t)dt − nC(x) − nK

]
≥

[ nx′∫
0

P(t)dt − nC
(
x′) − nK

]
�⇒

[ n′x∫
0

P(t)dt − n′C(x) − n′K
]

>

[ n′x′∫
0

P(t)dt − n′C
(
x′) − n′K

]
,

or equivalently that

C
(
x′) − C(x) ≥ 1

n

nx′∫
nx

P (t)dt �⇒ C
(
x′) − C(x) >

1

n′

n′x′∫
n′x

P (t)dt. (14)

A sufficient condition for (14) is 1
n

∫ nx′
nx

P (t)dt > 1
n′

∫ n′x′
n′x P (t)dt , i.e., the function H(n) �

1
n

∫ nx′
nx

P (t)dt , for x′ > x fixed, is strictly decreasing in n. Consider (treating n as a real vari-
able w.l.o.g.)

H ′(n) = − 1

n2

nx′∫
nx

P (t)dt + 1

n

[
x′P

(
nx′) − xP (nx)

]
by Leibnitz’s integral rule

< −1

n

(
x′ − x

)
P

(
nx′) + 1

n

[
x′P

(
nx′) − xP (nx)

]
, since P is decreasing.

= x

n

[
P

(
nx′) − P(nx)

]
< 0, since x′ > x.

As (14) holds, F(n, x) satisfies the strict dual single-crossing property in (x; n). Hence xn, being 
an argmax of F(n, x) for fixed n, is decreasing in n (Milgrom and Shannon [12]). �
Proof of Proposition 4. Since � > 0 when C is convex, a symmetric Cournot equilibrium exists 
for any n. The aim of the proof is to show that, for any regular or extremal equilibrium, one has 
π ≥ K .
N−1
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We need to consider the optimization problem (2) both with real choice variables and with 
the formulation with integer n. Since C ′′ > 0, the objective (11) is easily shown to be strictly 
quasi-concave in (x, n). Let (N,x) be the argmax in (11) with the integer constraint on the 
number of firms. Then there exists a unique pair of real numbers (m,xm) satisfying (12)–(13), 
or

P(mxm) = C′(xm) and πm = xmP (mxm) − C(xm) = K

as well as N = m+ (the smallest integer larger than m) or N = m− (the largest integer smaller 
than m). We consider the latter two cases separately.

If N = m+, then N − 1 ≤ m and, since F(n, x) is strictly concave in n,

∂F (n, x)

∂n

∣∣∣∣
m

= xmP (mxm) − C(xm) − K = πm − K = 0

≤ ∂F (n, x)

∂n

∣∣∣∣
N−1

= xN−1P
[
(N − 1)xN−1

] − C(xN−1) − K

= πN−1 − K. (15)

Likewise, if N = m−, then N ≤ m and

∂F (n, x)

∂n

∣∣∣∣
m

= xmP (mxm) − C(xm) − K = πm − K = 0

≤ ∂F (n, x)

∂n

∣∣∣∣
N

= xNP (NxN) − C(xN) − K = πN − K. (16)

Since by Lemma 3, πn ≥ πn ∀n, (15) and (16) imply that πN−1 ≥ πN−1 ≥ K . Hence, N ≥
N − 1. �
Proof of Proposition 5. We claim that N = 1. Indeed, rewriting (2) with industry output z and 
n as the decision variables and A(·) as the average cost curve yields the equivalent objective ∫ z

0 P(t)dt − zA(z/n) − nK . Clearly, for fixed z, this objective is decreasing in n if A(·) is 
decreasing. Since the latter is implied by the concavity of C, it follows that N = 1. Hence, 
N ≥ N . �
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