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Abstract. Establishing existence and characterizing equilibria are both important achievements
in the study of auctions. However, we recognize that equilibria existence results form the basis
for well accepted characterizations. In this survey, we review the landmark results and highlight
open questions regarding equilibria existence and characterizations in auctions. In addition, we
review the standard assumptions underlying these results, and discuss the suitability of the Nash
equilibrium solution concept. We focus our review on single-object auctions, but also review results
in multi-unit, divisible, combinatorial and double auctions.
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1. Introduction

The widespread use of auctions creates strong demand for results both to inform practitioners and
to advance the theoretical understanding of auctions. Although many textbooks and surveys have
been written,1 the literature on equilibria existence and characterization in auctions still lacks a
comprehensive overview. We begin by recognizing that answering any question about auctions must
begin with an analysis of the equilibrium (or equilibria) of a game-theoretic model.2 Without an
equilibrium, any characterization of players’ strategies or actions, and the final auction outcome, is
unstable. Yet, characterizing an auction’s equilibrium is important too because the characterization
provides a prediction of players’ behaviour.

Our survey provides an overview of the equilibria existence and characterization results in auctions,
highlights the opportunities for research to economists and mathematicians and proceeds as follows.
Section 2 describes the standard model of single-object auctions, and discusses the concepts of types,
values, formats, as well as the suitability of the (Bayesian-)Nash equilibrium concept. (A reader
familiar with game theory and basic auction theory can safely skip this section, but the information
contained therein is assumed in later sections.) Section 3 presents general game theory results for
discontinuous games and mixed strategy equilibria applicable to auction theory. Also, we explain
why many standard existence results in general games do not apply to auctions, leading to the need
for specific results. Section 4 details the common assumptions employed when proving equilibrium
existence in pure strategies. Section 5 catalogues pure strategy equilibrium existence results for first-
price auction across many different models, and we highlight open questions. Section 6 discusses
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how equilibria are characterized and surveys characterization results. Section 7 introduces multi-unit
auctions, and surveys the equilibria and characterization results in standard multi-unit auctions, divisible
good auctions and combinatorial auctions. Section 8 considers double auctions where sellers are active
players. Section 9 connects auction theory to other branches of economics and briefly concludes.

2. Single-Object Auctions

The simplest auction setting has one (non-strategic) seller and many possible buyers competing for one
indivisible object. Let n be the fixed number of bidders, where i = 1 , . . . , n indexes each bidder.3 In
general, the object has an uncertain value to each participant and the values can be modelled as random
variables, V 1 , . . . , Vn, one for each bidder. For risk neutral bidders, the payoff is 0 if the bidder loses
the auction and does not receive the object, whereas the payoff is Vi − pi if the bidder wins the auction
and receives the object.4 The payment pi for the object is determined by the bids in conjunction with
the format of the auction.

The uncertainty about the payoff is in Vi, the value of the object. For example, if the object is a
petroleum field, the value depends on the quantity and the quality of the oil in the field, the international
price of petroleum, the cost of drilling and extraction and other private characteristics of bidder firms.
In other words, many variables determine the value of the object. Among these variables, some are
privately known by the bidders, some are known by other bidders and some variables are unknown
to all participants. The information about those variables are captured by Harsanyi’s theory of games
with incomplete information through the concept of types.

2.1 Types and Values

In almost all cases, an auction is a game of incomplete information. It is an economic game because
each player has to choose an action (bid) and the payoff to each player depends on the actions (bids)
of the other bidders. Because of uncertainty regarding how much the object is worth to each player,
the players do not know the payoffs even if all actions are given, and thus a game of incomplete
information.

Harsanyi’s remarkable papers made incomplete information games tractable.5 Translating Harsanyi’s
theory of types to auctions, a bidder’s value (Vi) is determined by the bidder’s type (ti), and potentially
the types of all other bidders.6 The list below introduces the standard concepts in auction theory
regarding the connection between types and values:7

Private values: The type of each bidder exclusively determines the value of the object for that
bidder.8 This setting is reasonable when the object for sale is exclusively used (consumed) by the
buyer. Indeed, if the possibility of resale exists, then the types of the other bidders is potentially
relevant for the value of the object in the resale.
Common values: All bidders value the object equally.9 This setting is natural for auctions of
durable goods that can be resold.
Symmetric, interdependent values: The value of the object depends on the bidder’s type as well
as the other bidders’ types, although not on their identities.10 This setting generalizes both the
common and the private values settings.
Asymmetric, interdependent values: No assumptions are made about the interaction between types
and values for any of the bidders.

It is worth highlighting that common value is not the opposite of private value. Common value
means that all bidders values the object equally, whereas private value means that the bidder possesses
all information regarding the value of the object.
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2.2 Formats for Single-Object Auction

The auction format determines the payment of the winning bidder. This survey only considers standard
auctions in which the bidder that places the highest bid wins the object. The two main classes of
standard auctions are sealed bid and open bid. In sealed formats, bidders submit their bids to the
auctioneer without other bidders observing the bids. In the language of game theory, the bids are
simultaneous actions.

Below we list the most common sealed bid auction formats:

First-price: the winner pays his bid.
Second-price: the winner pays the second highest bid.
All-pay: all bidders pay their bids.11

War-of-attrition: the winner pays the second highest bid and the losers pay their bids.12

Meanwhile, in open formats, the potential sale price changes during the auction as the auctioneer
announces the current winning bid to all bidders, as bidding occur sequentially. Thus, open formats
are sequential games. The different formats – sealed versus open – provide different information at
different times to participants and therefore affect strategic actions.

For open auctions many possible formats also exist. A popular open auction is the English auction,
where the bidders successively place higher bids to outbid opponents. When no bidder wants to
place a higher bid, the auction ends and the declarer of the last bid wins the object and pays his
bid.

A closely related open auction is the Japanese or button auction. In this auction, the price starts
very low and each bidder presses a button, then the price increases continuously and bidders quit the
auction (i.e. release the button) when the asking price for the object exceeds their willingness-to-pay
for the object.13 In open button auctions, all bidders see how many and (possibly) which bidders are
still active. When there is just one bidder remaining, the auction finishes and last active bidder wins
the object. The English and Japanese auctions are examples of ascending auctions because the price
increases during the bidding.14

Milgrom and Weber (1982) and others usually model the Japanese auction when studying open
ascending auctions because continuous price increases simplify the analysis. Indeed, formal models
of the English auction are rare in the literature due to the complications from jump bidding where
the price does not increase continuously; however, for examples of models with jump bids see Avery
(1998) and Isaac et al. (2007).

Another example of an open auction is the Dutch auction. This auction begins by displaying a very
high price for the object and then continuously lowers the price, until some bidder claims the object.
The price is frozen when the object is claimed and the auction winner pays that price. Theoretically, the
Dutch auction is equivalent to a first-price, sealed-bid auction, because no information is learned during
the auction and the strategy is equivalent to deciding at what price to buy the object. Interestingly,
empirical and experimental studies do not confirm this theoretical equivalence as in Kagel et al. (1987)
and Lucking-Reiley (1999).

Similarly, the English and Japanese auctions are weakly equivalent to the second-price, sealed-bid
auction. The weakness of the equivalence comes from the information that bidders learn with open
formats. Specifically, each bidder learns the other bids and can update the value of the object for sale.
Milgrom and Weber (1982) discuss the equivalence of the English and second-price auctions under the
assumption of private values.

Both open and sealed-bid auctions can have reserve prices or entry fees. A reserve price means that
the auctioneer will not sell the object for a price below the reserve price. Some auctions use a hidden
reserve price. If the sale price is below the reserve price, then the object is not awarded to the winning
bidder. In this situation, the object is said to be ‘bought in’, a terminology consistent with the notion
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that a reserve price acts like a bid from the seller. An entry fee is a fixed cost for the right to bid and
in some circumstance increases seller revenues.15

For simplicity, this survey focuses on sealed-bid auctions. Thus, each bidder simply chooses a bid
to maximize expected profit, where the difference between the value of the object and the payment
determines profit when winning the auction, and zero otherwise.16

2.3 Why Nash Equilibrium?

One of the most commonly used concept in economics and game theory is the Nash equilibrium.17

Despite the common usage, we find it important to discuss why the Nash equilibrium applies as an
appropriate solution concept in the analysis of auctions.18

The main benefit of using the Nash equilibrium comes from its concise prediction of self-stable
strategies by players. That is, no player can do better by unilaterally deviating from a Nash equilibrium
strategy given that all other players continue to play their corresponding Nash equilibrium strategies.
The stability of the equilibrium is an important requirement for an economist; otherwise, the derived
characterizations and properties of the equilibrium would have little usefulness.

The Nash equilibrium solution concept, however, has some significant problems. An important
criticism is that Nash equilibrium strategies are, in general, very difficult to calculate, especially in
auctions where the number of potential bidder types and values, and potential bids, may be quite large.
Compounding the complexity problem, if one player calculates an optimal strategy and is unsure that
the other players will follow the corresponding strategies precisely, then the calculated equilibrium
strategy may no longer be optimal.19

In response to the complexity critique, one can argue that players who do not learn the equilibrium
strategy will be forced out of the market. In auctions, this means that experienced bidders, or the bidders
that survived many auctions, learned to play the equilibrium strategies. Experimenters have confirmed
this hypothesis in private values auctions (e.g. Kagel et al., 1987). Nevertheless, the learning process
interpretation has its own problems. It implicitly requires that the bidders participate in a number of
similar auctions, with similar bidders, but preferably not the same. If the same bidders meet repeatedly
in the auctions, then the likelihood of collusion increases. Also, the transitory period of learning
the equilibrium may take a non-negligible amount of time. The learning period’s length depends on
the degree of the uncertainty and the information revealed at the end of the auction. Unfortunately,
auction procedures often provide little information to participants. For example, the estimated values
of the bidders are unobservable and, in some auctions, only the highest bid is known after the auction
ends.20

Adding to the list of difficulties, some experimenters reported consistent bidding behaviour above the
Nash equilibrium solution.21 This leads to consideration of what can be said if the players do not follow
Nash equilibrium strategies. As Pearce (1984) and Bernheim (1984) point out, rationality of the players
does not imply Nash equilibrium, rather rationality only implies the use of rationalizable strategies. In
this setting, Battigalli and Siniscalchi (2003) derive interesting conclusions and some of their results
can explain experimental findings that contradict with predicted Nash equilibrium behaviour.

It is beyond the scope of this survey to present a complete picture of the debate regarding the
relevance of Nash equilibrium. However, we highlight that, at some point, the Nash equilibrium
solution concept needs to be ‘assumed’. That is, the Nash equilibrium can be considered not only
a solution concept, but additionally a meta-assumption for the methodology used by economists
to analyse the behaviour of bidders in an auction. This meta-assumption, or paradigm, allows the
economist to focus on behaviour that can be considered stable and reasonable, and from there
begin to make predictions. Thus, the Nash equilibrium provides a powerful combination between the
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mathematical structure required to study complex games and the economic conclusions derived from the
analysis.22

3. General Equilibria Results

Nash (1950) provides the first general existence result for equilibria in games.23 The hypotheses of
Nash’s theorem are continuity and quasiconcavity of the payoff functions, and it guarantees existence in
mixed strategies. In this section we address three issues. one, mixed strategy equilibria limit the ability
to predict behaviour, mitigating the usefulness of the Nash equilibrium, and leading to a preference
for pure strategy equilibria. two, auctions do not necessarily possess continuous payoff functions due
to the positive probability of ties, and thus proving equilibria existence in auctions is generally more
difficult compared to other economic games. Three, we discuss different methodologies the literature
uses to handle the possibility of ties.

3.1 Mixed Strategies

When using a mixed strategy, the bidder chooses a probability distribution over the set of possible
bids. Although mixed strategies are more general than pure strategies – because any pure strategy
comes from a mixed strategy with a degenerate probability distribution that selects a particular bid
with probability one – we highlight two problems interpreting mixed strategies in an auction setting.

First, it is difficult to accept that a bidder chooses their bid through a random device. Indeed, the
reliance on a random device is a general objection to mixed strategies in game theory. In response,
Rubinstein (1991) discusses three alternative interpretations of mixed strategies. One, the game can
be viewed as the interaction between large populations where the games takes place after a random
draw from the population, so the mixed strategy is viewed as the distribution of pure choices in the
population. Two, the ‘purification’ idea posits that while the players’ actions might appear random to
the economic modeller, the actions are deterministic given exogenous information not captured by the
model. Three, a mixed strategy could be the prior beliefs held by all other players regarding a player’s
possible actions.24

Secondly, the mixed strategy equilibrium is difficult to characterize because a mixed strategy does
not provide a specific prediction of players’ actions, but rather a portfolio of possible actions that may
not all be realized. Therefore, an existence result in mixed strategies, in general, does not provide as
much information about the bidding behaviour of the players, leading to a preference for existence
results in pure strategies.

3.2 Discontinuous Games

An economic game is discontinuous when small changes in player behaviour can create large differences
in the final payoff. Because discontinuous games are common, including in auction settings when ties
may occur with positive probability, a vast literature exists studying this class of games. Contributors
include Dasgupta and Maskin (1986), Simon (1987), Baye et al. (1993), Reny (1999), Carmona (2005),
Bagh and Jofre (2006) and Carmona (2009).

The most general result that applies to auctions comes from Jackson et al. (2002). They guarantee
the existence of an equilibrium in discontinuous games with all (atomless) distributions of types.
Nevertheless, the result has at least two undesirable characteristics: first, it is in mixed strategy;
and, secondly, it requires an endogenously determined tie-breaking rule. Jackson and Swinkels (2005)
continues the analysis for a large class of private value games and shows that the outcome is invariant
to the tie-breaking rule, yet the existence result still employs a mixed strategy.

Journal of Economic Surveys (2012) Vol. 26, No. 5, pp. 911–932
C© 2011 Blackwell Publishing Ltd



916 DE CASTRO AND KARNEY

3.3 Tie-breaking Rules

The payoffs in auctions are discontinuous when a positive probability of tied bids exists. In the case
of a tie, a tie-breaking rule (or mechanism) must allocate an indivisible object. However, a bidder
that wins the object with probability strictly less than one can bid above – but arbitrarily close to the
tying bid – and in doing so discontinuously increases the probability of winning. Discontinuity in the
payoff function makes the construction of optimal bidding strategies difficult to specify using the Nash
equilibrium concept. The main question of this section becomes: What kind of tie-breaking rules are
sufficient for equilibrium existence?

Lebrun (1996) seems to be the first to mention the need of special tie-breaking rules in the auction
theory literature. Types of tie-breaking rules include:

Random device: The standard way of solving ties appeals to a random device, like a coin, to decide
the outcome of the game. Under this rule, some discontinuous games do not have equilibria.
Endogenous: Simon and Zame (1990) point out that a special, endogenous tie-breaking rule can
solve the problem of existence for general discontinuous games. Jackson et al. (2002) generalizes
Simon and Zame (1990) for games with incomplete information. The endogeneity of the tie-
breaking rule follows from the limit of allocations that may result from the auction. Using this
approach, one cannot characterize the limit of allocations or describe a specific tie-breaking rule.
However, Araujo and de Castro (2009) employ an endogenous tie-breaking rule that is monotonic
in types, where the bidder with the higher type always wins the tie-breaking procedure.
Exogenous: Maskin and Riley (2000b) adopt an exogenous tie-breaking rule for auctions with
finite bidder types. The rule specifies that the bidders who tie participate in a second-price auction
to determine the winner. Araujo et al. (2008) adopt an all-pay auction as the tie-breaking game,
and they prove that this rule is sufficient to ensure equilibrium existence results in games where
the utility function is not necessarily monotonic.

Again, for private values auctions, Jackson and Swinkels (2005) demonstrate that the equilibrium
is invariant to the tie-breaking rule, diminishing the importance of rule specification. Unfortunately,
the invariance result does not hold for interdependent values auctions, as illustrated in Jackson et al.
(2002). Interestingly, Athey (2001) considers a general class of games with interdependent values, but
her result does not require an endogenous tie-breaking rule. Araujo and de Castro (2009) discuss what
assumption in Athey (2001) makes an endogenous tie-breaking rule unnecessary.

4. Standard Assumptions

Before surveying the pure strategy existence results for single-object auctions in Section 5, we introduce
the usual assumptions that guarantee an equilibrium in monotonic bidding functions. A monotonic
bidding function means that higher types lead to higher bids, all else equal, a strong characterization
of bidder behaviour. Assumptions fall into three classes:

(i) Monotonicity of the value function (and The Single Crossing Property);
(ii) Statistical dependency of types; and,

(iii) Dimension of types and bids.

Many open question in auction theory involve relaxing these assumptions.

4.1 Monotonicity of the Value Function

The literature usually assumes that payoffs are strictly increasing in a bidder’s own type and constant,
or non-decreasing, in the other bidders’ types. Then, monotonic methods ensure equilibrium existence
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by assuming a form of the Single Cross Property (SCP), such as in Athey (2001) or Reny and Zamir
(2004). Although these papers work with non-differentiable versions of the SCP, the differentiable
case SCP requires that the second cross derivative of types and bids are positive, and helps establish
existence results.25 The term ‘single crossing’ sometime refers to another condition that assures an
efficient equilibrium, where the object is assigned to the player that values it the most.26 It is important
not to confound these two different concepts, since they are not logically related.

4.2 Statistical Dependence of Types

Next, most of the equilibrium results assume independence of types. Independence is a strong
assumption and relaxing this assumption is quite valuable. Milgrom and Weber (1982) achieve
remarkable success in relaxing independence through the concept of affiliation.27 Under this kind
of dependence, they prove the existence in first-price, second-price and English auctions. Since their
paper, almost all models that relax the independence hypothesis in auction theory use the concept of
affiliation. Jackson and Swinkels (2005) is a notable exception, and for a more recent discussion, see
de Castro (2007). In another interesting model, Riley (1988) investigates a setting where information
about the value of an object is correlated across bidders.

4.3 Dimension of Types

Under the last class of hypotheses, the literature usually assumes that types and bids are unidimensional,
and can be simply expressed as real numbers. If one allows multidimensional types, then it is harder to
determine which bidder values an object the most. Although generally restrictive, the unidimensionality
of types does not restrict the case of private values with independent types. In this case, one can always
reparameterize the multidimensional signals of each bidder into a unidimensional type given by

τi ≡ E[Vi | ti ]

where, τ i summarizes all the information that bidder i needs to know. In other words, each bidder can
construct τ i as a sufficient statistic.28 In the case of dependent types, the reparameterizing argument
becomes problematic, because the bidder does not want to lose information when summarizing
information into a unidimensional variable.

In the case of interdependent values, the existence of sufficient statistics becomes less clear. Under
a scenario of symmetric, interdependent values, but with independent types, Araujo et al. (2008) show
that a sufficient statistic exists, assuming a strictly increasing value function. Unfortunately, they also
show a loss of generality occurs when values are non-decreasing in types. It is still an open question
whether dimension reduction can be done in the case of asymmetric auctions with non-symmetric,
interdependent values or correlated types.

To be clear, a multi-dimensional bid can arise in single-object auctions. Multi-dimensionality can
model situations such as the procurement of a service with many different characteristics. For instance,
some companies and governments buy specialty goods and services through a mechanism where the
potential suppliers need to specify not only prices, but also warranty, quality, time to delivery, and
other characteristics. All these characteristics have to be taken in account to decide the winner in such
instances. Che (1993) works with a model of multidimensional bids that captures the described situation.

5. Pure Strategy Equilibrium Existence

Here, we survey the pure strategy existence results for single-object auctions that began with the
pioneering work of Vickrey (1961).29 Roughly speaking, two methods are used in the literature for
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establishing an equilibrium in pure strategies. The first analyses the solution to a (set of) differential
equation(s) derived from the first-order condition(s) of the bidder’s best-reply problem, and then, under
some assumptions, proves that this solution satisfies sufficient conditions for an equilibrium. The second
method begins by restricting the feasible bids (or types) to discrete sets. With the auction reduced to
a finite game, it is then proven to have an equilibrium. The properties of convergence guarantee the
desired behaviour in the limit as the grid of actions (or types) becomes finer. The first method has
the advantage of characterizing the equilibrium strategy and, in some cases, providing an analytical
expression. On the other hand, the second method is more general.

Papers that use the first approach include Milgrom and Weber (1982), Lebrun (1999) and Lizzeri
and Persico (2000). Milgrom and Weber (1982) assume affiliated types and that each bidders’ utility
function is increasing in all types. Under these conditions, they show that there exists a pure strategy
equilibrium for which the bidding functions are monotonic in types. Their results cover the first-price,
the second-price and English auctions but require, as an important condition, symmetry. Lebrun (1999)
extends the differential equation approach to the asymmetric first-price auction, but with private values
and independent types. Lizzeri and Persico (2000) use the approach for the case of common values
with reserve price and affiliated types, but only two bidders.

Maskin and Riley (2000a), Athey (2001) and Reny and Zamir (2004) follow the second approach.
Maskin and Riley (2000a) establish existence of equilibrium for asymmetric, first-price auctions either
with affiliated types and private values, or with independent types and common values. The model in
Athey (2001) covers a wider class of discontinuous games, establishing existence results for several
two bidder first-price auctions with affiliated types and common values. Reny and Zamir (2004) extent
Athey (2001) results to the n bidder case.

Table 1 summarizes the equilibrium existence results for first-price auctions under various
assumptions about the statistical dependence of types and how types affect the value function.
Assumptions about the value function run across the top of the table, whereas assumptions about
types and the number of bidders appear on the left-hand side. We include the symmetric, private value
assumption combination for completeness. The table also shows the cases that have no existence
result denoted ‘Open Question’, where we define a question as open if the best known result
is the existence of mixed strategy equilibria with endogenous tie-breaking rule in Jackson et al.
(2002).

Assumption combinations for first-price auctions not present in Table 1 do not have existence
results (unless otherwise noted). The question of existence remains open for many settings involving
general type dependence and non-monotonic value functions. Section 6 discusses the characterizations
presented in the table.

We continue with equilibrium results in other auction formats. Milgrom (1981) analyses the second-
price auction. Milgrom and Weber (1982) provide an early analysis of the English auction assuming
symmetric, private values with independent types, risk neutrality and unitary demand. Amann and
Leininger (1996) and Krishna and Morgan (1997) study the cases of all-pay auctions and war-of-
attrition.30

Almost all of the results in the papers about pure strategy equilibrium existence share a common
characteristic: the equilibrium bidding functions are monotonic non-decreasing in the bidders’ types.
We note a few exceptions. In Zheng (2001), the private information is the budget constraint, and
the bidding behaviour can be non-monotonic, but nevertheless his setting also has a monotonic
equilibrium. McAdams (2007) provides examples of uniform price auctions (two units are sold) where
non-monotonic equilibria can exist. Araujo et al. (2008) study auctions where the utility functions are
not necessarily monotonic and non-monotonic equilibrium arise naturally. On the other hand, de Castro
(2008) shows that symmetric first-price auctions with grid-distributions always have an equilibrium in
pure strategies, but need not have monotonic strategies.31
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6. Characterization

Characterizations play a key role in understanding the strategic behaviour of bidders. Some may even
consider characterization results to be more important than existence results. A characterization provides
a predicted behavioural action, or tendency, given bidders’ types and therefore characterization results
are particularly useful for auction practitioners. Generally speaking, characterizations allow comparative
static exercises on such parameters as the number of bidders or the distribution of types.

We classify characterization results into four categories, organized from most specific to most
general: closed-form solutions, systems of differential equations, monotonicity and pure strategies.32

We describe the four categories and survey the relevant results as follows:

(i) Closed-form: In auctions, usually the first-order condition (FOC) leads to a differential equation,
which sometimes has a closed-form solution.33 This solution specifies an exact bid given a bidder’s
type (and possibly depending on some other parameters).34 This type of explicit characterization
is very convenient, but generally difficult to obtain. At present, closed-form results are limited
to symmetric, single-object auctions and can be found in any textbook about auctions. Milgrom
and Weber (1982) is an early paper with closed-form solutions to the first-price, second-price
and English auctions; and, see Krishna and Morgan (1997) for the war-of attrition and all-pay
auctions.

(ii) System of differential equations: When the FOCs do not yield a closed-form solution, they form
a system of differential equations. Unfortunately, the system characterization does not provide
as much information as the closed form solution. However, using differential equations one
can study the tendencies of strategic behaviour as opposed to prescribing a specific bid. System
characterization results apply to asymmetric, first-price auctions as in Lebrun (1998, 1999), Maskin
and Riley (2000a) and Lebrun (2006). Williams (1991) derives system characterizations for double
auctions. de Castro and Riascos (2009) generalize the first-order conditions for general auctions,
including multi-unit auctions. However, we are not aware of any general result showing the
existence of differentiable equilibria in multi-unit auctions.

(iii) Monotonicity: Without a system of equations, sometime one can determine that the bidding
functions must exhibit monotonicity in types. Although an interesting result, this limited
characterization contains less information than the general system of equations, but some auction
settings limit the current literature to monotonicity characterizations. For instance, Athey (2001)
and Reny and Zamir (2004), for single-object auctions, and McAdams (2003, 2006), for multi-
object auctions.

(iv) Pure strategy: In addition to the three previous types of characterization, we can consider proving
that an equilibrium exists in pure strategies, instead of mixed strategies, as a characterization
result. Most of the literature derives pure strategy equilibria with monotonic strategies; however,
non-monotonic pure strategy equilibria exist (e.g. de Castro, 2008).

In general, robust characterizations are scarce and thus many open questions about characterizations
remain. Specifically, Table 1 shows the types of characterization for first-price auctions, where the
number in each cell corresponds to the characterization type enumerated above. Clearly, increasing the
specificity of any characterization provides value to researchers and practitioners.

7. Multi-Unit Auctions

Instead of just one object, the seller may have many objects to sell. In this case, the seller may select to
implement a multi-unit auction where all units are sold in the same auction – in contrast to a sequence
of single-object auctions. Multi-unit auctions also apply when a seller wants to sell perfectly divisible
shares of an object.
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All of the complexities in single-object auctions must also be addressed in the analysis of multi-unit
auctions, but this expanded setting creates additional dimensions for strategic behaviour by buyers.
Importantly, not all equilibrium results from single-object auctions have analogous results in multi-unit
auctions. Open questions regarding equilibria in multi-unit auctions include completely describing the
strategy space and discovering additional equilibrium existence results under relaxed assumptions.

7.1 A Model of Multi-Unit Auction

Let the seller have L fixed units for sale, so the value Vi becomes an L-vector. Often the elements of
Vi exhibit diminishing marginal values. In a multi-unit auction each bidder submits a demand function;
that is, a vector bi = (bi1 , . . . , biL), where bih specifies bidder i’s willingness-to-pay for the hth unit
that the bidder could receive. However, some multi-unit auction rules limit the number of steps in
the demand function to an integer value below L . For a general model of multi-unit auctions with
indivisible units, see de Castro and Riascos (2009).

7.2 Formats of Multi-Unit Auctions

As in the single-object case, the multi-unit auction has many possible formats. The most important
sealed price formats for multi-unit auctions include:

Discriminatory (‘pay-your-bid’): Each bidder pays exactly the bid for the unit received.
Uniform-price: All the units are sold at the same price.
• Highest loser: The price is set at the highest losing bid.
• Lowest winner: The price is set at the lowest winning bid.
• Convex combination: Auction rules may allow the price to be between the two previous options

or the two previous options may occur each with some positive probability.35

Vickrey: For each unit bought, the seller pays only the minimum necessary to win such unit. That
is, the winner of each unit pays the highest losing bid of the other bidders.

As in the case of single unit auctions, open formats exist in close correspondence with those given
above. For details and a more lengthy treatment, see Krishna (2002).

7.3 Existence Results for Multi-Unit Auctions

Most results of equilibrium existence for multi-unit auctions assume homogeneous units for sale.
Engelbrecht-Wiggans and Kahn (1998) obtain some of the first results specific to multi-unit auctions.
The authors limit their analysis to two bidders with two objects for sale, but prove existence of
an equilibrium for the highest-losing, uniform-price auction. Chakraborty (2006) follows by proving
equilibrium existence in a discriminatory format. Alvarez and Mazon (2010) show that an equilibrium
exists in a discriminatory auction for two units of common value.

Reny (1999) shows how his better-reply security condition implies the existence of equilibrium for
multi-unit, private values, independent types, pay-your-bid auctions. Extending Athey (2001) to the
multidimensional framework, McAdams (2003) proves the existence of pure strategy equilibrium in
multi-unit, uniform price auctions.

All of the results presented in this section rely upon the assumption of monotone strategies where,
all else equal, increasing a bidder’s type raises the value of the object(s), the bid(s) and thus weakly
increases likelihood of winning. However, the focus on monotone bidding strategies can be quite
restrictive in some circumstances.
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7.4 Divisible Good Auction

Another setting for the multi-unit auction occurs when a good is perfectly divisible. When selling
shares of a good, the bidders may be able to submit a continuous demand function – instead of a
step-function as required by the discrete case – specifying the willingness-to-pay for any fraction on
the normalized interval [0, 1]. In an early analysis, Wilson (1979) studies a symmetric, common value,
uniform price auction and compares the revenue from selling shares versus selling the entire unit in a
single-object auction, and concludes that a share auction yields a significantly lower sale price. Kremer
and Nyborg (2004) show the result in Wilson (1979) is due to a specific share allocation rule rationing
excess demand. Wang and Zender (2002) prove the existence of a continuum of equilibria for bidders
with symmetric information in both uniform and discriminatory auctions. Besides the uniform price
per share auction, divisible good auctions can take other formats such as the discriminatory or Vickrey.
For the general case when utility is not linear, equilibria existence is an open question when bidding
occurs in continuous units and non-integer steps.

7.5 Combinatorial Auctions

A variant of the multi-unit auction is the combinatorial auction, where the goods are not required to
be homogeneous. Instead, the heterogeneous objects are sold in packages so that bidders can exploit
complementarities in the objects.36 In doing so, the strategies for combinatorial auctions are extremely
complex give the large number of possible packages and bids. The expansion of strategies can only in-
crease the number of potential bidders and hopefully – from the seller’s perspective – increase revenues.

An important feature of combinatorial auctions is the clearing mechanism that determines the price
of each package. In this setting, prices can be non-linear and non-anonymous (see Bikhchandani
and Mamer, 1997; Bikhchandani and Ostroy, 2002). Non-linear pricing means that the price paid for
a package of two identical objects can cost more than the sum of the same two objects bought by
different buyers. Non-anonymous pricing means that a seller can charge buyers different prices for the
same packages.

Combinatorial auctions can be quite complex. Also, due to their generality, results regarding
combinatorial auctions focus on mechanisms that support a desired equilibrium characteristic, rather
than equilibrium existence. The Vickrey-Clarke-Groves (VCG) mechanism – a version of the second-
price auction for multiple units – is a popular benchmark for new results, because the it elicits truthful
bidding as the equilibrium strategy and it provides an efficient outcome.37 In another combinatorial
auction mechanism, Ausubel and Milgrom (2002) describe an open, ascending-price auction with
jump bidding, designed to increase revenues to the seller. For more detailed surveys on combinatorial
auctions, see de Vreis and Vorha (2003) and Cramton et al. (2006).

8. Double Auctions

In double auctions, both buyers act strategically. An example of a double auction is the standard
financial market for equity shares, but few studies make the explicit connection between financial
markets and double auctions. In fact, double auctions can be the correct model for many market
institutions where players (bidders) can use their private information in order to manipulate the price
of the object; however, as the number of players (bidders) increases, the power to manipulate price
diminishes. This interesting line of investigation may establish connections between general equilibrium
and strategic behaviour. Double auctions are also useful when analysing secret reserve prices, used in
some auction houses, because secret reserve prices can be modelled as bids by sellers.

An important class of double auctions are the k-double auctions. These are sealed-bid auctions,
where trade occurs if a buyer bid b is above a seller offer s. The k refers to a constant k ∈ (0, 1)
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which determines the trading price kb + (1 − k)s in case there is trade (b � s). That is, in a k-double
auction the price paid by the buyer to the seller is a fixed convex combination (given by k) of the
bid and the offer. In particular, if k = 1 (k = 0), the double auction is called a ‘buyer’s-bid auction’
(‘seller’s-offer auction’). In a series of papers, Satterthwaite and Williams prove equilibrium existence
and study the efficiency properties of the sealed-bid k-double auction.38 In particular, Satterthwaite and
Williams (1989b) discusses the rate of convergence to efficiency. These papers consider the symmetric
value, independent types case.

More recently, Jackson and Swinkels (2005) considered multi-unit, asymmetrical, double auctions
with a general distribution of types and private values. In this setting, they are able to prove that
the tie-breaking rule does not matter, a result that does not hold in interdependent values. They also
prove the non-triviality of equilibrium; that is, an equilibrium with positive probability of trade exists,
assuming more than one buyer and one seller.39

Reny and Perry (2006) and Fudenberg et al. (2007) consider symmetric, double auctions with
conditionally independent types and prove the existence of an equilibrium when the number of players
is high. Araujo and de Castro (2009) prove the existence of non-trivial pure strategy equilibria in
asymmetric, double auctions with interdependent values and a small number of players, but with an
endogenous tie-breaking rule. Reny and Perry (2006) and Fudenberg et al. (2007) do not need special
tie-breaking rules due to the number of players in their model. The assumption of large number of
players ensures that the best replies are increasing, and is similar to the role that statistical independence
plays in Araujo and de Castro (2009).

9. Connections and Conclusion

Beyond the traditional topics, the study of auctions has deep connections to other branches of
economics. Some important questions in the general equilibrium theory can be rigorously addressed
via auctions. For instance, Milgrom (1981) discusses how auctions can provide foundations for rational
expectation theory. Reny and Perry (2006) contributes to this research program by extending Milgrom’s
idea to a model of double auctions. Auctions can also be used to build a foundation for the price-taking
assumption that is central to general equilibrium. There is also a connection between Akerlof’s ‘market
for lemons’ and the winners’ curse, as shown by Araujo and de Castro (2009). The impossibility
theorem of Myerson and Satterthwaite (1983) generated a literature on efficient auctions such as
Swinkels (2001) and Cripps and Swinkels (2006). Auctions are also convenient to address issues of
information aggregation, a central question in economics, at least since Hayek (1945). For auctions, the
explicit influence of types on bids shows how information available to individual buyers (and sellers)
forms the final, market clearing price. For more recent works on information aggregation and auctions,
see Kremer (2002). In sum, auctions are useful when addressing many important economic questions.

This survey offers an introduction to equilibria in auctions, reviews of the literature, and highlights
open questions. Although some of the properties of auctions are well understood, many still require
renewed efforts, and hopefully this survey helps to stimulate the necessary research.
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Notes

1. For textbooks, see Krishna (2002), Milgrom (2004), Klemperer (2004) and Menezes and Monteiro
(2005). For surveys, see Milgrom (1989), Wolfstetter (1996), Klemperer (1999) and Maskin (2004).
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2. Examples of important questions regarding auctions include: What auction format leads to the highest
expected revenue for the seller? How do auction rules impact the number of participating bidders? How
can the rules promote bidding? How does aggressive bidding by some participants affect other bidders’
behaviour in equilibrium? How can collusion be prevented? What is the value of information? How
does the seller use his information? Do the auction rules promote the revelation of information and,
thus, good price formation? Is the auction efficient; that is, does it award the object to the bidder that
values it the most? And so on.

3. Some papers analyse how the conditions and rules of the auction affect the number of participants
where the number of participants is not assumed fixed (e.g. Levin and Smith, 1994). In complementary
work, Jehiel and Moldovanu (1996) study the strategic incentives of potential bidders to participate in
an auction.

4. There are some technical difficulties when modelling other attitudes towards risk. Also, a zero payment
in the losing case assumes no cost for submitting a bid.

5. See Harsanyi (1967, 1968a,b). Appendix A provides a summary of Harsanyi’s approach. For a
mathematical formulation reconciling beliefs about other players’ types, see Mertens and Zamir (1985).

6. Mathematically, vi (t1, t2, . . . , tn) = E[Vi | t1, t2, . . . , tn], where vi stands for the value function vi : T →
R, and ti ∈ Ti represents the Harsanyi type of player i . We usually write t = (t1, t2 , . . . , tn). See
appendix A for details.

7. For a discussion regarding the statistical dependence of types, see Section 4.
8. In private values, vi(t) depends only on ti.
9. Common values is mathematically defined by vi(t) = v(t)∀i . Some authors call this pure common value

and use the term ‘common value’ for what we call interdependent value.
10. Mathematically, vi(t) = v(ti, t−i), where t−i = (t1 , . . . , t i−1, t i+1 , . . . , tn) and v(ti , t−i ) = v(ti , t ′

−i ) for all
t ′
−i permutations of the types in t−i.

11. Although not very common in practice, the all-pay auctions can model, for instance, R&D races. In
such a model, everybody pays the investment in research, but the firm that invests the most in R&D
secures the patent first, and receives the payoff.

12. The war-of-attrition can model survival among a set of firms.
13. Here, ‘button’ need not be taken literally.
14. The Japanese auction has two variants. In one variant, the bidders do not see when others dropout and

thus no information is learned during the auction. As a result, the ‘blind’ Japanese auction is equivalent
to the second-price, sealed-bid auction.

15. In settings were bidders interact post-auction, Jehiel and Moldovanu (2000) discuss how reserve
prices and entry fee can influence the degree of positive and negative externalities in the post-auction
environment.

16. The analysis of open auctions presents complications because the open auction is dynamic. The
sequential nature of the bids means that more information is revealed in the open auction the longer
the auction proceeds. These complications lead to a general lack of equilibrium results for dynamic
auctions. See Basar and Olsder (1982) for a discussion of dynamic non-cooperative game theory, and
Vincent (1990) for dynamic auctions.

17. For readers unfamiliar with the Nash equilibrium and the Expected Payoff function, see Appendixes
B and C, respectively for formal definitions. Because of the uncertainty in auction payoffs, the Nash
equilibrium concept specializes to the Bayesian–Nash equilibrium. From now on, this survey refers to
a Bayesian–Nash equilibrium simply as a Nash equilibrium.

18. Many different solution concepts have been proposed to analyse games, such as the quantal response
equilibrium by McKelvey and Palfrey (1995), the S(1)-equilibrium by Osborne and Rubinstein (1998),
the analogy-based equilibrium by Jehiel (2005) and cursed-equilibrium by Eyster and Rabin (2005).
Battigalli and Siniscalchi (2003) analyse auctions from the point of view of rationalizability, instead of
equilibrium.
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19. Jehiel and Koessler (2006) recognize these limitations and develop a bounded rationality model that
aggregates players actions over analogy classes. They solve these types of games using the analogy-based
expectation equilibrium (ABEE).

20. Jehiel (2010) discusses the role of information disclosure as a mechanism to impact allocative efficiency
and auction revenues.

21. See Kagel (1995) for a discussion and a survey of the corresponding literature.
22. Of course, this is a testable meta-assumption. Nevertheless, it is hard to test, even in experiments, where

the conditions are controlled. Kagel (1995) describe an intense debate about the consistency between
the observed behaviour of individuals in experiments and the assumption that they play Nash equilibria.
Empirical tests provide further complications, as discussed by Laffont (1997).

23. Before Nash, the study of equilibrium focused on zero-sum games. Nash (1950) generalized the concept
of an equilibrium and of equilibrium existence for non-zero-sum games. It is sometimes argued that
Nash’s concept is already present in Cournot’s works. Thus, some authors call it the Cournot–Nash
equilibrium.

24. Aumann and Brandenburger (1995) provide sufficient conditions such that a profile of conjectures leads
to a Nash equilibrium.

25. Mathematically, the SCP is defined as ∂2
bt u � 0.

26. This other condition is denoted by ∂ti ui ≥ ∂t j u j . See Krishna (2002) and the references therein.
27. Affiliation can be defined as follows. Consider n real random variables t1 , . . . , tn and let f (·) be its joint

density function. Then, the variables are affiliated if f (t) · f (t ′) � f (t∨t ′) · f (t∧t ′), where t ∨ t ′ ≡
(max{t1, t ′

1}, . . . , max{tn, t ′
n}) and t ∧ t ′ ≡ (min{t1, t ′

1}, . . . , min{tn, t ′
n}). Milgrom and Weber (1982) use

definition without use of the density function.
28. It follows from this argument that the unidimensional signal can be interpreted as the value for the

bidder, see Milgrom and Weber (1982, footnote 14, p. 1097). Also, see Milgrom (2004, p. 159–161) for
a more detailed discussion.

29. Griesmer et al. (1967) provide other early contributions.
30. Even limiting the focus to papers that treat the equilibrium as a central question, it is impossible to

cite every relevant paper. Other dimensions of complexity include risk aversion (see Matthews, 1983;
Maskin and Riley, 1984), collusion (see McAfee and McMillan, 1992), entry of bidders (see Levin
and Smith, 1994; Campbell, 1998), and financial constraints (see Zheng, 2001; Fang and Parreiras,
2002).

31. Grid distributions are distributions with a density function which is constant in squares covering the
support of types. See de Castro (2008) for a formal definition and a discussion.

32. It would be possible to define another category of characterization: whether the equilibrium applies
standard tie-breaking rules or not. Jackson and Swinkels (2005) show that auctions with private values
do not need special tie-breaking rules, thus providing this kind of ‘characterization’. However, their
result applies to mixed strategies, whereas this section only discusses pure strategy results.

33. Appendix D shows how a differential equation can be obtained from the first-order condition in a
first-price auction.

34. Note that the solution of a first-order condition is not always an equilibrium; generally, a second-order
condition, or some analogous condition, must be satisfied. For a setting where the closed-form solution
always exists, but frequently fails to be an equilibrium, see de Castro (2008).

35. If the price is chosen to be the lowest winning bid, then this is a multi-unit version of the first-price
auction, but if it is the highest losing bid, then this is a multi-unit version of the second-price auction.
In addition, the pay-your-bid auction is another multi-unit extension of the first-price auction, whereas
the Vickrey auction is an extension of the second-price auctions.

36. For example, a telecommunications company may have a viable business if it is able to obtain two
adjacent spectrum licenses, but not if only one is acquired. The combinatorial auction enables the
company to avoid buying one license and then getting outbid for a second license.
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37. However, the VCG has problems as highlighted by Ausubel and Milgrom (2006) and Rothkopf (2007).
Some of these problems including the possibility of zero revenue, susceptibility to collusion and the
occurrence of shill bidders.

38. See Satterthwaite and Williams (1989a), Satterthwaite and Williams (1989b) and Williams (1991).
39. A trivial, no-trade equilibrium always exists: buyers offer too little, sellers ask too much and nobody

has an incentive to deviate.
40. The reader can consider the parameters as random variables correlated to the random variable Vi. In this

case, the utility function in equation (1) is a conditional expectation.
41. This is valid if the parameters can be infinite dimensional. In this case, one of the parameters can refer

to the function. The hypothesis that the parameter lies in an Euclidean space is the restrictive one.
42. The literature debates how well-founded the CPA is when modelling interactive decision problems, see

Gul (1998) and Aumann (1998).
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Appendix A: Harsanyi Types and Value Function

Each bidder has some information about Vi, that leads to a conditional distribution of its value. This
includes the case where the bidder knows with certainty the true value of Vi. Also, each bidder i
forms beliefs about the values of Vj, for j �= i and about the beliefs that bidders j �= i have about Vi.
Unfortunately, the logical loop continues because each bidder i has now to consider the beliefs of the
bidders j �= i over the beliefs of i over the beliefs of j and so on.

This section replicates the construction of types by Harsanyi (1967, 1968a,b) with the objective to
describe the value function. It is convenient and realistic to describe the value, Vi, as a function of a
set of parameters, that is, to assume that

Vi = ui (r0i , r1i , . . . , rni ) (A1)

where r0i is a vector of parameters that are unknown to all players and rki is a vector of parameters
that are unknown to some of the players but are known to player k, for k = 1 , . . . , n.40 The subscript
i in the above parameters refers to the value of the object to player i . Without loss of generality, we
can assume that the function ui is common knowledge for all players.41 Harsanyi assumes that the set
of all possible values of the parameters rki is Rki, (a subset of) an Euclidean space with the convenient
dimension. The vector rk = (rk1 , . . . , rkn), for k = 1 , . . . , n describes the information that player k has
about the functions ui, for i = 1 , . . . , n. The vector r0 = (r01 , . . . , r0n) summarizes the parameters
that none players have about ui. Of course, we can write Vi as function of the vector r = (r1 , . . . , rn),
where the unnecessary parameters do not influence the payoff. So, we can write
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Vi = ui (r0, r ) (A2)

where r is also denoted by (ri, r−i), with r−i ≡ (r1 , . . . , r i−1, r i+1 , . . . , rn). The range of r is denoted
by R and the range of r−i by R−i.

Harsanyi adheres to the Bayesian doctrine, that assumes that the players attribute subjective
probabilities to the unknown parameters, that is, each player forms a subjective probability over
R. Of course, we could again parameterize the possible probabilities and say that ski is the parameter
that player k knows about the subjective probability of player i . Repeating the previous procedure, si

denotes the vector of parameters known to bidder i . We end up by saying that each player forms a
probability μ

si
i , over the set of unknown parameters: R0 × R−i × S−i. Now, it is assumed that μ

si
i is

just a conditional probability from a prior distribution μi(·) over R0 × R × S, that is, it is assumed
that μ

si
i = μi (· | si ). Finally, it is assumed that the priors are equal across the players, that is, μ1 = · · ·

= μn = μ. This is known as Common Prior Assumption (CPA). It implies that the differences between
the subjective probabilities are due just to the differences in the parameters si.42

The parameters that are unknown to all players do not influence their behaviour in the auction.
Thus, bidders can restrict attention to V i , the expected value of Vi with respect to r0. That is, we can
eliminate the vector r0 in equation (A2), so that we have

V i = ui (r | si ) =
∫

R0

ui (r0, r ) μ (dr0, r | si ) (A3)

Now, we embrace all the information that bidder i possesses before choosing the bid in a unique
vector

ti = (ri , si ) = (ri1, . . . , rin, si1, . . . , sin) (A4)

and call it the type (or the signal) of bidder i . It represents all information that he has about: his own
payoff, the payoff of the others, his own beliefs and the beliefs of the others. Again we write t =
(t1 , . . . , tn) so that we can rewrite (A3) as

vi (t) ≡ V i = ui (r | si )

The function vi : T → R is called the value function.
This model can generalize to other risk attitudes and other kind of games. Begin by assuming that

the payoff ui also depends on the actions of the players, denoted by vectors a = (a1 , . . . , an) ∈ A1 ×
· · · × An ≡ A. In this case, minor changes are needed in the construction above to obtain functions vi

which also depend on A and not only on T . Thus, in a generalized form, vi : T × A → R.

Appendix B: Definition of Nash Equilibrium

A Nash equilibrium is a profile of strategies such that, for each bidder, no strictly better strategy
exists than the one specified in the profile given that the other bidders follow the strategies specified
in the profile. That is, no bidder finds it optimal to unilaterally deviate from the profile strategy.
The Nash equilibrium definition does not claim uniqueness of the profile. Note that an auction is a
non-cooperative game.

Formally, the game is a triple (I , X , V ), where I is the set of players, X = ×i∈I Xi is the set of
actions or strategies (Xi is the set of actions available for player i ∈ I ), and V is the payoff function
V : X → R

I , where Vi : X → R (the i th component of V ) gives the payoff (Vi(x)) of player i for each
profile of strategies x = (xi)i∈I ∈ X . We will adopt the standard (abuse) of notation of writing x−i ≡
(xj)j∈I,j �=i and x = (xi, x−i). Now, we can define:
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Definition of Nash equilibrium: A profile x∗ ∈ X is a Nash equilibrium of the game (I , X , V ) if,
for each i ∈ I , Vi (x∗

i , x∗
−i ) ≥ Vi (xi , x∗

−i ), for all xi ∈ Xi.

Appendix C: Definition of Ex ante and Interim Payoff Functions

Given the definition of types by Harsanyi, the concept of an expected payoff then makes sense for
auctions. Recall that the final (ex post) payoff from an auction is a function of the difference between
the value of the outcome – either getting the object or not – and the amount paid as a result of bidding
on the object – in the all-pay auction every bidder always pays their bid. The expected (ex ante) payoff
weights all the possible final outcomes by the probability of that payoff occurring through the Harsanyi
types and strategic bids.

In some auction settings, the interim expected payoff is a more relevant concept. The interim period
is when each bidder knows their type, but the types of the other bidders have not been revealed. In
contrast, the ex ante period is when none of the bidders know their type and the ex post period is when
all bidders know their type.

To clarify these concepts, it is necessary to introduce some notation. Let T = ×i∈I Ti be the space
of Harsanyi’s types, A = ×i∈I Ai be the set of actions available in the game of incomplete information
and vi : T × A → R be the payoff function for each player i ∈ I . A Bayesian game is a game (I , X ,
V ) where Xi= {x : Ti → Ai |xmeasurable}, and Vi : X → R, the ex ante payoff function, is given by

Vi (xi , x−i ) =
∫

T
vi (ti , t−i , xi (ti ) , x−i (t−i )) μ (dt) (C1)

where this integral exists. In this set-up, a Bayesian–Nash equilibrium is a Nash equilibrium of the
game (I , X , V ).

The interim payoff function is �i : Ti × Ai × X−i → R, given by

�i (ti , ai , x−i ) =
∫

T
vi (ti , t−i , ai , x−i (t−i )) μ (dt−i | ti ) (C2)

where the integration is done on t−i with respect to the conditional probability given ti, μ(dt−i | ti).
Usually we omit x−i in the notation above, if it is clear from the context; specially, if we are dealing
with symmetric equilibria. We say that a∗

i is optimal for player i with type ti against the strategies x∗
−i

of i’s opponents if for all ai ∈ Ai:

�i
(
ti , a∗

i , x∗
−i

)
� �i

(
ti , ai , x∗

−i

)
(C3)

Harsanyi (1968a) shows that x∗ = (x∗
i )i∈I is a Bayesian–Nash equilibrium of the game (I , X , V ) if

and only if for almost-all ti , a∗
i = x∗

i (ti ) satisfies (C3). That is, if x∗
i (ti ) is optimal against the strategies

x∗
−i of player i’s opponents.

Appendix D: Differential Equation from a First-Order Condition

In this Appendix, we provide an example of how to obtain a differential equation from a first-
order condition. Consider a single-object, first-price auction with symmetric, interdependent values
and affiliated types for N bidders. Suppose that all other bidders i �= j follow the increasing and
differentiable bidding strategy β. Let G(· | ti) denote the conditional cumulative distribution function
(CDF) of maximum of the other bidders’ values given bidder i’s type. Formally, G(· | ti) is the
conditional CDF of Yi ≡ max i �=jtj, where tj is the Harsanyi type of bidder j . Similarly, let g(· | ti)
be the associated condition density function of Yi. The interim expected payoff to bidder i with type ti
who bids b

Journal of Economic Surveys (2012) Vol. 26, No. 5, pp. 911–932
C© 2011 Blackwell Publishing Ltd



932 DE CASTRO AND KARNEY

�i (ti , b, β(·)) =
∫ β−1(b)

0
(v(ti , t−i ) − b)g(t−i | ti ) dt−i

=
∫ β−1(b)

0
v(ti , t−i )g(t−i | ti ) dt−i − bG(β−1(b) | ti )

To obtain the first-order condition, we take the derivative of �i with respect to b, which is

{
E[v(ti , t−i ) | Yi = β−1(b), ti ] − b

}
g(β−1(b) | ti )

dβ−1(b)

db
− G(β−1(b) | ti )

(D1)

Under a symmetric and increasing equilibrium, the optimal for bidder i with type ti is to bid b =
β(ti), that is, β−1(b) = ti. This implies that dβ−1(b)

db = 1
β ′(ti )

. Thus, making equation (D1) equal to zero
and by rearranging terms we obtain the differential equation

β ′(ti ) = {
E[v(ti , t−i ) | Yi = β−1(b), ti ] − β(ti )

} g(ti | ti )

G(ti | ti )
(D2)

Under some assumptions (affiliation, for instance), it is possible to show that the solution to this
differential equation is an equilibrium.
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