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DYNAMIC QUANTILE MODELS OF RATIONAL BEHAVIOR
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This paper develops a dynamic model of rational behavior under uncertainty, in
which the agent maximizes the stream of future 7-quantile utilities, for 7 € (0, 1). That
is, the agent has a quantile utility preference instead of the standard expected utility.
Quantile preferences have useful advantages, including the ability to capture hetero-
geneity and allowing the separation between risk aversion and elasticity of intertem-
poral substitution. Although quantiles do not share some of the helpful properties of
expectations, such as linearity and the law of iterated expectations, we are able to es-
tablish all the standard results in dynamic models. Namely, we show that the quantile
preferences are dynamically consistent, the corresponding dynamic problem yields a
value function, via a fixed point argument, this value function is concave and differen-
tiable, and the principle of optimality holds. Additionally, we derive the corresponding
Euler equation, which is well suited for using well-known quantile regression methods
for estimating and testing the economic model. In this way, the parameters of the model
can be interpreted as structural objects. Therefore, the proposed methods provide mi-
croeconomic foundations for quantile regression methods. To illustrate the develop-
ments, we construct an intertemporal consumption model and estimate the discount
factor and elasticity of intertemporal substitution parameters across the quantiles. The
results provide evidence of heterogeneity in these parameters.

KEYWORDS: Quantile utility, dynamic programing, quantile regression, intertempo-
ral consumption.

1. INTRODUCTION

MODELING DYNAMIC ECONOMIC BEHAVIOR has been a concern in economics for a long
time (see, e.g., Samuelson (1958), Baumol (1959), Koopmans (1960), Brock and Mirman
(1972)). These models are critical for learning about economic effects, incentives, and to
design policy analysis. We contribute to this literature by developing a new dynamic model
for an individual, who, when selecting among uncertain alternatives, chooses the one with
the highest r-quantile of the stream of future utilities for a fixed 7 € (0, 1), instead of the
standard expected utility. This quantile preference model is tractable, simple to interpret,
and substantially broadens the scope of economic applications, because it allows to ac-
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count for heterogeneity through the quantiles and separation between risk aversion and
elasticity of intertemporal substitution.!

Quantile preferences were first studied by Manski (1988) and axiomatized by Chambers
(2009) and Rostek (2010). Manski (1988) developed the decision-theoretic attributes of
quantile maximization and examined risk preferences of quantile maximizers. In the con-
text of preferences over distributions, Chambers (2009) showed that monotonicity, ordi-
nal covariance, and continuity characterize quantile preferences. Rostek (2010) axioma-
tized the quantile preferences in Savage’s (1954) framework, using a ‘typical’ consequence
scenario.

This paper initiates the use of quantile preferences in a dynamic economic setting by
providing a comprehensive analysis of a dynamic rational quantile model. To motivate
our model, we begin by describing a setting where the dynamic quantile preferences are
compelling.” The quantile preferences are represented by an additively separable quantile
utility model with standard discounting. The associated recursive equation is character-
ized by the sum of the current period utility function and the discounted value of the
certainty equivalent, which is a quantile function. In addition, we discuss the notion of
risk attitude and elasticity of intertemporal substitution (EIS) in our model, and show
that by using the recursive quantile preferences, it is possible to separate the notion of
risk attitude from the intertemporal substitution. Thus, quantile preferences are a useful
alternative to the expected utility, and a plausible complement to the study of rational
behavior under uncertainty.?

We then introduce the dynamic programming for intertemporal decisions whereby the
economic agent maximizes the present discounted value of the stream of future r-quantile
utilities by choosing a decision variable in a feasible set. Our first main result establishes
dynamic consistency of the quantile preferences, in the sense commonly adopted in deci-
sion theory. Second, we show that the optimization problem leads to a contraction, which
therefore has a unique fixed point. This fixed point is the value function of the problem
and satisfies the Bellman equation. Third, we prove that the value function is concave and
differentiable, thus establishing the quantile analog of the envelope theorem. Fourth, we
show that the principle of optimality holds. Fifth, using these results, we derive the corre-
sponding Euler equation for the infinite horizon problem. To obtain our Euler equation,
we offer a sufficient condition for exchanging derivative and quantile operators, which
does not hold in general.

We note that the theoretical developments and derivations in this paper are of inde-
pendent interest. The main results for the dynamic quantile model—dynamic consistency,
value function, principle of optimality, and Euler equation—are parallel to those of the
expected utility model. However, because quantiles do not share all of the convenient
properties of expectations, such as linearity and the law of iterated expectations, the gen-
eralizations of the results from expected utility to quantile preferences are not straight-
forward.

The derivation of the Euler equation is an important feature of this paper because it
allows to connect economic theory with empirical applications. We show that the Eu-
ler equation has a conditional quantile representation and relates to quantile regression

'Rostek (2010) discussed several advantages of the static quantile preference, such as robustness, ability to
deal with categorical (instead of continuous) variables, and the flexibility of offering a family of preferences
indexed by quantiles.

2A formal axiomatization of these preferences was provided by de Castro and Galvao (2018).

3Quantile preferences can be associated with Choquet expected utility (see, e.g., Chambers (2007), Bassett,
Koenker, and Kordas (2004)). The method of Value-at-Risk, which is widespread in finance, also is an instance
of quantiles (see, e.g., Engle and Manganelli (2004)).
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econometric methods, and hence, our methods provide microeconomic foundations for
quantile regression. The Euler equation, which must be satisfied in equilibrium, implies a
set of population orthogonality conditions that depend, in a nonlinear way, on variables
observed by an econometrician and on unknown parameters characterizing the prefer-
ences. Thus, empirically, one can employ practical existing econometric methods, such
as instrumental variables for nonlinear quantile regression, for estimating and testing the
parameters of the model. In this fashion, these parameters can be interpreted as struc-
tural objects. In addition, varying the quantiles 7 enables one to empirically estimate a set
of parameters of interest as a function of the quantiles.*

Finally, we briefly illustrate the methods with an intertemporal consumption model,
which is central to contemporary economics and finance. We use a variation of Lucas’s
(1978) model where the economic agent decides on how much to consume and save by
maximizing a quantile utility function subject to a linear budget constraint. We solve the
dynamic problem and obtain the Euler equation. Following a large body of literature,
we specify an isoelastic utility function and estimate the implied discount factor and EIS
parameters at different levels of risk attitude (quantiles). The empirical results document
evidence that both parameters vary across quantiles.

More broadly, this paper contributes to the literature by proposing methods that could
be applied to any dynamic economic problem, substituting the standard expected util-
ity by dynamic quantile preferences. Such preferences maintain useful characteristics of
the standard model, such as dynamic consistency and monotonicity. Moreover, they allow
the separation between risk aversion and EIS. Since dynamic economic models are now
routinely used in many fields, such as macroeconomics, finance, international economics,
public economics, industrial organization, labor economics, and scenario-based analysis,
among others, our methods expand the scope of economic analysis and empirical appli-
cations, providing an alternative to expected utility models.

The remainder of the paper is organized as follows. Section 2 presents definitions and
basic properties of quantiles, provides a motivating example of recursive quantile pref-
erences, and briefly discusses its properties. Section 3 describes the dynamic economic
model and presents the main theoretical results. Section 4 illustrates the empirical useful-
ness of the new approach by applying it to an intertemporal consumption model. Finally,
Section 5 concludes. We relegate all proofs to the Appendix.

1.1. Review of the Literature

This paper has a broad scope and relates to a number of streams of literature in eco-
nomic theory and econometrics.

First, the paper relates to the extensive literature on dynamic nonlinear rational ex-
pectations models. Many models of dynamic maximization that use expected utility have
been proposed and discussed. These models have been workhorses in several economic
fields. We refer the reader to more comprehensive works, such as Stokey, Lucas, and
Prescott (1989) and Ljungqvist and Sargent (2012). Another related segment of the liter-
ature studies recursive utilities. We refer the reader to Epstein and Zin (1989), Marinacci
and Montrucchio (2010), Bommier, Kochov, and Le Grand (2017), among others. We
extend this literature by replacing expected utility and its variations with quantile utility.

“We note that the theoretical methods do not impose restrictions across quantiles, and thus the parameter
estimates might (or might not) vary across quantiles.
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Second, this paper is related to a few works on economic models using the quantile
preferences, such as Manski (1988), Chambers (2007, 2009), Bhattacharya (2009), Ros-
tek (2010), and, especially, Giovannetti (2013). The latter studies a two-period economy
for an intertemporal consumption model under quantile utility maximization. We con-
tribute to this line of research by taking the quantile maximization to a general dynamic
optimization model and deriving its properties.

Third, the paper relates to an extensive literature on estimating Euler equations. Since
the contributions of Hall (1978), Lucas (1978), Hansen and Singleton (1982), and Dunn
and Singleton (1986), it has become standard in economics to estimate Euler equations
based on conditional expectation models. There are large bodies of literature in micro-
and macroeconomics on this subject. We refer the reader to Attanasio and Low (2004)
and Hall (2005), and the references therein, for a brief overview. The methods in this
paper derive a Euler equation that has a conditional quantile function representation and
estimate it using existing quantile regression (QR) econometric methods.

Finally, this paper relates to the QR literature, for which there is a large body of work in
econometrics.’ In a seminal paper, Koenker and Bassett (1978) introduced QR methods
for estimation of conditional quantile functions. These models have provided a valuable
tool in economics and statistics applications to capture heterogeneous effects, and for ro-
bust inference when the presence of outliers is an issue (see, e.g., Koenker (2005)). QR
has been largely used in program evaluation studies (Chernozhukov and Hansen (2005)
and Firpo (2007)), identification of nonseparable models (Chesher (2003) and Imbens
and Newey (2009)), nonparametric identification and estimation of nonadditive random
functions (Matzkin (2003)), and testing models with multiple equilibria (Echenique and
Komunjer (2009)). This paper contributes to the effort of providing microeconomic foun-
dations for QR by developing a dynamic optimization decision model that generates a
conditional quantile restriction (Euler equation).

2. QUANTILE PREFERENCES

This section provides motivations for the recursive equation (equation (10) below) that
is characterized by the sum of the current period utility function, and the discounted value
of the quantile certainty equivalent. The recursive equation is the central element in the
definition of the dynamic quantile preferences, which is completed in Section 3.

2.1. Preliminaries

Let Fx : R — [0, 1] be the continuous and strictly increasing cumulative distribution
function (c.d.f.) of the random variable X. Then, Fyx has an inverse and we can define
Q. [X]=F ;1(7), for 7 € (0,1).° This definition can be extended to the conditional case:
if Fxjy_,(-) is the conditional c.d.f. of X given Y =y, Q,[X|Y = y] = Fy),_,(7). In gen-
eral, we will write only Q,[X|Y] for the corresponding random variable, as usual. In the
Appendix, we give the definition of Q,[X] for general c.d.f.’s and develop some useful
properties of quantiles, such as the fact that it is left-continuous and Fy(Q,[X]) > 7. An-
other well-known and useful property of quantiles is “invariance” with respect to mono-
tonic transformations, that is, if g : R — R is a continuous and strictly increasing function,

SThis paper is also related to an econometrics literature on identification, estimation, and inference of
general conditional moment restriction models. We refer the reader to, among others, Newey and McFadden
(1994), Chen, Linton, and van Keilegom (2003), and Chen, Chernozhukov, Lee, and Newey (2014).

For convenience, throughout the paper we will focus on 7 € (0, 1), unless explicitly stated.
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then’

Q.[g(X)] = g(Q.[X]). ey

Note that this property is valid for an expectation operator only if g is affine, that is,
g(x) = ax + b, for a > 0, or the distribution is a point mass. Hence, expectation is in-
variant with respect to positive affine (cardinal) transformations, and quantile is invariant
with respect to monotonic (ordinal) transformations. This observation suggests the con-
venience of contrasting other properties of quantiles and expectations.

Both quantiles and expectations are monotonic in the following sense: if X first-order
stochastically dominates Y, then Q,[X] > Q,[Y]. If X is risk-free, that is, X = x with
probability 1 for some x, then Q,[X] = x = E[X]. Both are also translation-invariant,
that is, Q,[a + X] = a + Q,[X], Ya € R; and scale-invariant, that is, Q.[aX] = «Q.[X],
Va € R,. Notice, however, that E[aX] = ¢E[X], Y& € R, while this equality is not true
for quantiles with a < 0. Indeed, Q,[—X] = —Q;_,[X]. On the other hand, quantiles do
not share many of the convenient properties of expectations. We highlight three prop-
erties that fail for quantiles and would be important for our results. First, in general,
quantiles are not linear: Q.[X + Y] # Q,[X] + Q,[Y], although Proposition A.4 in the
Appendix provides a comonotonicity condition under which this additivity holds. Second,
quantiles do not satisfy an analogue of the law of iterated expectations: if 3, C 3, are two
o-algebras, then, in general, Q,[Q,[X|3;]|30] # Q,[X|30]; see Example 3.7. Third, it is
not possible to interchange a differentiation and a quantile operator, as it is for expecta-
tions. That is, in general, 2= [h(x, Z)] # Q,[2(x, Z)]. Proposition 3.19 below, to the best
of our knowledge, is another original contribution of this paper and establishes sufficient
conditions for this interchangeability.

2.2. Static Quantile Preferences
The quantile preferences over random variables X and Y can be defined as follows:
X>Y <+ QI[X]=Q,[Y] 2)

It is useful to compare the quantile preference (2) with the standard expected utility
preference, defined by

X>zY << EuX)]=EuY)], 3)

for some u : R — R. First, notice that a utility function u appears in (3) but not in (2). The
reason for such omission is the fact that we can use (1) to conclude that

XY = QIX]1=QI[Y] < u(Q,[X])=u(Q,[Y])
= Q. [uX)]=Q.[u)], “4)

for any strictly increasing and continuous u. Thus, u does not play any role in the defini-
tion of the preference. In other words, (2) is invariant to any monotonic transformation
of u, while the expected utility preference (3) is invariant only to monotonic affine trans-
formations of u.

An important implication of (4) is that, while the concavity of u implies risk aversion
for an expected utility maximizer, it does not have any impact on the risk attitude of a

7In fact, (1) is also valid for a left-continuous and non-decreasing function; see Lemma A.2 in the Appendix.
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quantile maximizer: any concave or convex increasing u represents the same preference.
Manski (1988) and Rostek (2010) argued that the risk attitude of a quantile maximizer
can be captured by 7. We discuss this characterization in Section 2.4.2 below.

Manski (1988) was the first to study quantile preferences, which was recently axiom-
atized by Chambers (2009) and Rostek (2010). Rostek (2010) axiomatized the quantile
preferences in the context of Savage’s (1954) subjective framework. Rostek (2010) mod-
ified Savage’s axioms to show that they are equivalent to the existence of a 7 € (0, 1), a
probability measure, and a quantile utility function.®* Chambers (2009) worked in a risk
setting where the probability distribution of the random variables is given, in contrast
with Rostek’s uncertainty setting. He showed that the preference satisfies monotonicity,
ordinal covariance, and continuity if and only if the preference is a quantile preference.'”

2.3. Recursive Quantile Preferences

This section aims to motivate the recursive quantile preferences. First, we present an
example where the dynamic quantile preference is particularly compelling. Second, we
briefly discuss an axiomatization of the preferences. This axiomatization shows an impor-
tant property of the recursive quantile preferences, which is the separation between risk
attitudes and attitudes toward intertemporal substitution.

2.3.1. Example

This example is developed around three main ingredients: (i) a setting where a deci-
sion maker’s preference is a quantile preference; (ii) a discussion of time aggregation in
the deterministic case through the standard additive time aggregation preferences; (iii) a
requirement of dynamic consistency for the choices made in different periods.

Assume that a decision maker (DM) chooses one among different policies that will
affect her utility derived from consumption during 7 periods. The utility of the DM is
expressed by U = U (¢, ¢y, - . ., cr), Where ¢, is the consumption in period t =0, 1, ..., T.
Let zy, ..., z, be a sequence of random shocks. Each z, is realized and known at the begin-
ning of period ¢. Let z' = (zi, ..., z,) represent the history of shocks up to period ¢, upon
which the consumption in period ¢ may depend, that is, ¢, = ¢,(z") and ¢ is certain. The
policy choice affects the distribution of the ¢, and, hence, of U; see details in Section 4.
The DM is particularly concerned about the 7-quantile of the distribution of the utility
of consumption. For example, if 7 = 0.1, the DM is interested in the lower part of the
distribution, while if 7 = 0.99, the interest is on the top 1% of the distribution. Thus, she
maximizes

Q’T[U] = QT[U(C(J’ Clyenes CT)] = QT[U(COa Cl(zl)’ ceey Ct(zt)’ ceey CT(ZT))]' (5)

Notice that the quantile 7 captures the risk attitude of the DM, as briefly mentioned be-
fore and further discussed in Section 2.4.2 below. Hence, when the DM with risk attitude

8If 1 € {0, 1}, the statement is more complex; see her paper for details.

9Rostek (2010) also showed that the quantiles preferences are probabilistic sophisticated for 7 € (0, 1), by
using a variation of the original concept of probabilistic sophistication introduced by Machina and Schmeidler
(1992).

10Since the upper semicontinuity property is a technical condition and first-order stochastic dominance is
a mild restriction, also satisfied by expected utility, the really important property is invariance with respect to
monotonic transformations, which is summarized by (1).
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7 chooses a certain policy, she ensures to receive a utility level that is larger than Q,[U]
with probability 1 — 7.

The setup (5) is related to a large literature on Value-at-Risk (VaR); see, for instance,
Duffie and Pan (1997) and Gourieroux and Jasiak (2010). While VaR is usually used as a
restriction of the domain of choice in the usual mean-maximization program, Gaivoronski
and Pflug (2005, p. 4) discussed a model for portfolio optimization for short observation
periods where the investor or manager decides on the optimal portfolio allocation to max-
imize the 7-quantile of the return of the portfolio at the end of the period (the wealth),
since the mean is approximately zero for any reasonable portfolio. In a VaR setting, 7 is
referred to as confidence level and captures risk tolerance.

Having the general form of the objective function Q.[U(c, ¢y, ..., cr)], we now dis-
cuss the particular specification of U(cy, ¢i, - . ., cr), which includes the time aggregation
across periods. Let us first fix attention to the riskless case. Assume that the DM faces
a sequence of certain consumption levels ¢y, ¢y, ..., cy. The aggregation of this stream
may take many forms, but the most common in economics is the standard exponential
discounting:

T
Ulc,cr,...er) =y Bulc), (6)

t=0

for some B € (0, 1) and strictly increasing and continuous u. Notice that the preference
on riskless streams of consumption defined by (6) is uniquely determined by u up to
affine transformations. In particular, the preference will no longer be invariant with re-
spect to all monotonic transformations of u as it is in the static case (3)."" This is an
important observation and its consequences will be further discussed below. It should be
noted that it is possible to define alternative forms of the time aggregation that are in-
variant with respect to all monotonic transformations. An example is U(cy, ¢y, ..., Cr) =
min{u(cy), ..., u(cr)}. However, our motivation of quantile preferences does not rely on
this invariance, while it is a central piece of Chambers’s (2007) justification for the quan-
tile function. In fact, invariance to all monotonic transformations does not hold in our
model. We forgo this strong form of invariance to maintain the standard discounting for
deterministic prospects.

Now we treat the case with risk. If there is no decision to be made in different periods,
the introduction of risk poses no problem and the objective function could be written as
Q.[U]= QT[ZL B'u(c,)]."* However, if there is a decision to be made in each period,
which is the case in most models, then we need to be more explicit about what is known
at that time period. Moreover, it is important to require the choices to be dynamically
consistent. Intuitively, the DM correctly anticipates future decisions such that there is no
preference change over time." It turns out that dynamic consistency is the last require-
ment that allows us to pin down the dynamic quantile preference.

1T see this, it is sufficient to observe that, for instance, u(c;) + Bu(c,) and /u(cy) + B+/u(c,) represent
different orders in general.

2Notice that this model retains the standard additive separability in time, but not in uncertainty. This is
in contrast with the dynamic expected utility model. Additive separability in time but not in uncertainty also
appears in Epstein and Schneider (2003), Maccheroni, Marinacci, and Rustichini (2006), and Klibanoff, Mari-
nacci, and Mukerji (2009), among others. As Mongin and Pivato (2015) discussed in more detail, full additive
separability is implied by monotonicity axioms applied to both time and uncertainty.

13 A formal definition of dynamic consistency is given in Section 3.4.
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FIGURE 1.—Graph of the c.d.f. of the different variables, with respective quantiles.

In order to further discuss dynamic consistency, let us particularize the above set-
ting. Let T = 2 and consider independent variables z;, z,, where z, is revealed at period
te{l,2}). Let U(c, c1, c2) = U(co, c1(21), c2(21, 22)) = z1 + 2, be the utility function. The
DM has to choose an economic policy that determines the distribution of z,, leaving the
distribution of z; unaffected. Indeed, z; assumes values 0 or 2 with equal probability, no
matter what is the policy. There are two policies, which for simplicity we call policies A
and B. Let us denote by z;' the random variable z, when policy A is chosen, and similarly
for z2. The c.d.f. of each of those variables is shown in Figure 1(a).!* Similarly, we call
U~ the utility when the policy A is adopted and U® when B is, that is, U4 = z, + z;! and
U® = z, + z2. This highlights that the utility has different distributions, according to the
policy chosen. The c.d.f.’s of U and U? are depicted in Figure 1(b)."

Let us assume that the DM chooses her plan at the initial time (before z; is realized),
but the actual choice can be made after the first period. The DM prefers A if

Q.[U"]=Q,[z1+ '] = Q.[z: + 2] = Q.[U”"], (7)

and B if the opposite is true. If, for instance, 7 = 2, then Q,[U"] > Q,[U®], that is, be-
fore z; is realized, the DM chooses A; see Figure 1(b). We will now see that, after the
realization of z;, this choice is inconsistent no matter what the actual value of z; is. In-
deed, if z; =0, then z; + z, = z; and Q,[z5'] < Q,[2%]; see Figure 1(a). Similarly, if z; = 2,
z1+2,=2+42zand Q,[2+ 2] =2+ Q,[z;'] <2+ Q,[zF] = Q,[2+ zZ]. In other words, in
the moment that the choice is actually made, the DM chooses B, for all realizations of z;.
Thus, her choice before z; is realized should also be B and not A as implied by the model
in (7).

This discussion shows that the model in (7) does not satisfy dynamic consistency. In
order to obtain a model with such a property, we need to build a recursive structure in
the objective function. Namely, we first evaluate the conditional quantile of z, given z;.

14For instance, we consider that z,’s distribution is F;z‘(x) = %[x — %sin(wx)] if the A policy is adopted,
while z,’s distribution is F2 (x) = 1[x + ¥ sin(x)] if the policy is B, for x € [0, 2].
BUAs c.df. is Fii(x) = 1[x — Lsin(7x)] and UP’s c.d.f. is F5(x) = }[x + 1 sin(mx)], for x € [0, 4].
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In this particular example, where the variables are independent, Q,[z;]z;] = Q,[z,], but
in the general case, we will need to consider the random variable g(z;) = Q,[z,|z]. Then,
we evaluate the quantile of z; + g(z), that is,

Q.[z1 + g(z0)] = Q;[z1 + Q:[22z1]] = Q;[Q.[ (21 + 22)|z1]].

This should be the DM’s objective function to achieve dynamic consistency in this exam-
ple. Under independence, the above reduces to Q.[z;] + Q.[z].

In the general case, in period ¢, x, is the state, x,,; is the choice, and z, is the shock, the
period utility is u(x,, x,41, z,), and the objective function should be

T
QT [ o QT [Z Btu(xta Xit+15 Zt) ZT_l} e )Zl = 1i|’ (8)
t=0

where there are T operators Q. above. This concludes the definition of the quantile pref-
erence.'

Of course, the above construction is heuristic and informal. A formal derivation of this
preference requires an axiomatization, which is briefly discussed below. Our objective
here is simply to offer a concrete setting where our preference is compelling.

2.3.2. Axiomatization

The preference defined by (8) is formally axiomatized in de Castro and Galvao (2018).
In this section, we briefly discuss the main aspects of such axiomatization, which is divided
into static and recursive (dynamic) parts.

In the static case, de Castro and Galvao (2018) followed very closely the developments
of Chambers (2007)."7 The three main axioms that provide the quantile utility represen-
tation are monotonicity, ordinal covariance, and betting consistency (see, e.g., Chambers
(2005, 2007)). Monotonicity stipulates that if, for each state of nature, the consequence
of some act f is preferred to that of another act g, then f is preferred to g. This is a very
standard property, valid for most preferences. Ordinal covariance requires that increas-
ing transformations of a pair of acts do not change their ranking. In a sense, this axiom
captures the property stated in (4). Finally, betting consistency allows writing the aggre-
gation operator as a quantile with respect to some probability measure. These axioms are
the building block to construct static quantile preferences.

Regarding the recursive case, de Castro and Galvao (2018) built on the results in Bom-
mier, Kochov, and Le Grand (2017), who showed that a preference on a dynamic setting
satisfying the axioms of weak order, continuity, recursivity, history independence, and
stationarity can be represented by a utility function U that obeys the following recursive
equation:

U(h) =W (ho, I[U o h']), )

where W is a time aggregator, [ is a certainty equivalent functional, and A, and A' rep-
resent, respectively, the outcome of plan /4 in period 0 and A' its continuation from

161n the case that z,’s are independent, the above simplifies to Z;o B'Q [u(xs, Xi41, 2)]-

"The settings in Chambers (2009) and Rostek (2010) are not used because the former works in a context
of risk, instead of uncertainty, while the latter requires an infinite state space, which is not convenient for the
axiomatization of the dynamic preferences.
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period 1. This is contained in their Lemma 1. Bommier, Kochov, and Le Grand (2017,
Proposition 1) then showed that if the preference additionally satisfies the axioms of
monotonicity for deterministic prospects, and monotonicity, then W has an additively
separable structure, that is, W(c, x) = u(c) + Bx or W(c, x) = u(c) + b(c)x."® The first
case implies, in particular, that the decision maker evaluates riskless consumer streams
according to the standard exponential discounting utility Y.~ B‘u(c,) required above in
(6)." Given these results, de Castro and Galvao (2018) adapted the static quantile axioms
to a dynamic setting and combined them with Bommier, Kochov, and Le Grand’s (2017)
axioms to show that the certainty equivalent I[-] above is a quantile operator and that
W (c, x) = u(c) + Bx, thus obtaining the recursive equation

V(h) = u(ho) + BQ,[V (h")]. (10)

Section 3.3 below shows that this recursive structure leads to the preference definition
(8).

It is useful to compare the justification of the preference in Section 2.3.1 with this ax-
iomatization. In the example above, we first justified the quantile objective function. The
parallel here is the axiomatization of the static quantile function obtained with Cham-
bers’s (2007) axioms (monotonicity, ordinal covariance, and betting consistency). The
next step in Section 2.3.1 was to justify the standard exponential discounting for riskless
streams (6), which is a consequence of Bommier, Kochov, and Le Grand’s (2017) axioms
of monotonicity for deterministic prospects and monotonicity. Finally, Section 2.3.1 dis-
cusses dynamic consistency, which is directly related to the recursive structure (9), implied
by the other axioms of Bommier, Kochov, and Le Grand (2017). Section 3.3 below departs
from this recursive structure to finally obtain the preferences defined by (8).

2.4. Discussion

In this subsection, we discuss other advantages and features of the quantile preferences
that may be useful to further motivate its use.

2.4.1. Other Advantages of the Static Quantile Preference

Rostek (2010) discussed different motivations for the static quantile preference, among
which are robustness, invariance with respect to ordinal transformations of the conse-
quences, and properties of risk attitudes. She also discussed the use of quantile prefer-
ences for policy making and scenario-based analysis, and illustrated how quantile objec-
tive functions are useful for poll design and modeling risk attitude in an insurance setting
(Medicare).

The separation of tastes and beliefs, which is a desirable property of preferences as
discussed by Ghirardato, Maccheroni, and Marinacci (2005), can be added as a motiva-
tion. Indeed, economists often operate under an implicit assumption that the tastes of
a decision maker are relatively stable, while beliefs change with the availability of new
information. Ghirardato, Maccheroni, and Marinacci (2005) attempted to offer a result

8Bommier, Kochov, and Le Grand’s (2017) axiom D6 has a strict monotonicity requirement built into it.
Indeed, a time aggregator like W (c, x) = min{c, x} would not satisfy it. Notice that while the time aggregator
is strictly monotonic, the quantile is only weakly monotonic.

YThis time attitude with respect to deterministic prospects is usually directly imposed with an axiom. See,
for instance, Epstein and Schneider (2003), Maccheroni, Marinacci, and Rustichini (2006), and Klibanoff,
Marinacci, and Mukerji (2009).
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with this separation, but were able to obtain only a partial separation with a certainty
independence axiom. Quantile preferences allow for full separation between tastes and
beliefs. Namely, the utility attributed to the tastes does not interfere with the beliefs part
of the preference, which is robust to any monotonic transformation (and not only affine
ones).

2.4.2. Risk Attitude in the Quantile Model

Manski (1988) and Rostek (2010) argued that the risk attitude of a quantile maximizer
can be captured by 7. Manski (1988) discussed a definition of risk, which is based on
the single-crossing property and allows one utility distribution to be termed riskier than
another.

DEFINITION 2.1: We say that Fy is risker than Fy if Fy crosses Fy from below. That is,

Fy(y) =Fx(y), Vy<x and Fy(y)=Fx(y), Vy>x. (11)

Figure 2 illustrates (11), that is, that Fy crosses Fx from below at x. Notice that X
is more widespread than Y, which justifies the notion Fy is riskier than Fy. Let us also
illustrate this idea with a simple example. Let X be uniform on [0, 1] and Y, uniform
on [i, %]. These distributions have the same mean and the former has a larger variance,
which justifies the notion that X is riskier than Y. It is easy to see that Q,[X] = 7 and
Q.[Y]=I+ % Therefore, Q,[Y] > Q,[X] if 7 < 0.5, that is, a quantile maximizer with
small 7 prefers the less risky lottery Y. In contrast, if 7 > 0.5, the riskier X is preferred.
In other words, a higher 7 corresponds to more “propensity” for risk.

This property generalizes to quantiles in the following sense. Assume that Fy crosses
Fx from below at exactly one point (x), as shown in Figure 2. Thus, X can be intu-
itively considered “riskier” than Y. Notice that a 7-quantile maximizer (QM) prefers Y
if 7 < Fy(x) = Fx(x), and a 7-QM prefers X if 7 > Fy(x) = Fx(x), as the figure also
illustrates. Thus, a 7-QM has more “propensity for risk” than a 7-QM for 7 < 7".° This
property was used by Rostek (2010) to define a notion of “more risk aversion.” See Ros-
tek (2010, Section 6.1) and Manski (1988, Section 5) for further discussion. This notion
can be extended to the dynamic setting in a natural way; see de Castro and Galvao (2018)
for more details.

FIGURE 2.—FYy crosses Fy from below once.

2We refrain from saying that the 7/-quantile maximizer is more risk averse to avoid confusion with risk
aversion in the expected utility setting.
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2.4.3. Timing of the Resolution of Uncertainty and Intertemporal Substitution

Since Kreps and Porteus (1978) and Epstein and Zin (1989), it is well understood that
a separation of risk and intertemporal attitudes is possible only if the timing of the res-
olution of uncertainty matters. More recently, Bommier, Kochov, and Le Grand (2017,
Proposition 3) showed that scale-invariant certainty equivalents generate what is called
restricted indifference toward the timing of the resolution of uncertainty. This is, in a
sense, the weakest form of indifference toward the timing of the resolution of uncertainty
that still accommodates the separation of risk and intertemporal substitution attitudes.
Since the quantile certainty equivalent operator is scale-invariant, it belongs to this se-
lected class, and thus allows for this separation.

We illustrate how this separation can be achieved. Consider the utility index u(c) = c”.
If p € (0, 1), this corresponds to the case of risk aversion in the expected utility model,
and if p' < p?, 1 is more risk averse than 2, in the sense of having a higher coefficient
of relative risk aversion. However, in the static quantile preferences, any p > 0 leads to
exactly the same choices, as discussed above; see (4). In other words, the parameter p
does not capture any aspect of the decision maker attitude toward risk. As discussed in
Section 2.4.2, this attitude is captured by 7 in both the static and dynamic cases.

If we have multiple periods, however, the parameter p plays an important role. Indeed,
consider equation (10) with the same utility index above, that is,

V(CO’ 51) = CS + BQT[Elp]

Applied to a deterministic prospect, that is, ¢; = ¢y, this yields ¢{ + Bcy. It is easy to see
that the elasticity of intertemporal substitution (EIS) in this case is simply ﬁ Section 4.4
illustrates how to estimate the EIS with our dynamic quantile model using standard meth-
ods.

It is useful to compare our method with the most widely used method to separate risk
aversion and the EIS, which is the following specification of Epstein and Zin (1989) and
Weil (1990), with p # 0, a # O:

VE (¢, &) = (cf + B(E[E])*)7.

As observed by Bommier, Kochov, and Le Grand (2017), this model satisfies mono-
tonicity if and only if p = «, in which case the model collapses to the standard expected
utility model where the separation of risk aversion and EIS is not possible. In other words,
for achieving its goal, the popular Esptein—Zin—Weil preferences are necessarily non-
monotonic. Bommier, Kochov, and Le Grand (2017, Lemmas 2 and 3) illustrated some
of the problems that arise from this lack of monotonicity. In short, an Epstein—Zin—Weil
decision maker may prefer to reduce lifetime utility in all states of the world just out of his
willingness to reduce risk. In contrast, the willingness to reduce risk by a decision maker
with monotonic preferences will never lead to reduce lifetime utility in all states of the
world. This seems, therefore, a shortcoming of those preferences. Since dynamic quantile
preferences are monotonic, they are immune to this criticism.

3. ECONOMIC MODEL AND THEORETICAL RESULTS

This section describes a dynamic economic model and develops a dynamic program
theory for quantile preferences. The main results in this section are generalizations to
the quantile preferences’ case of the corresponding ones in Stokey, Lucas, and Prescott
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(1989), which focus on expected utility. Our results increase the scope of potential appli-
cations of economic models substantially by using quantile utility. Moreover, the general-
izations are of independent interest. The demonstrations are not routine since quantiles
do not possess several of the convenient properties of expectations, such as linearity and
the law of iterated expectations.

3.1. Dynamic Model

The recursive equation (10) describes the preference from one period to the next; it is
now necessary to show how it determines the preferences over plans. To do this, we need
some definitions and new notation.

3.1.1. States and Shocks

Let X C R” denote the state space, and Z C R the range of the shocks (random vari-
ables) in the model. Let x, € X and z, € Z denote, respectively, the state and the shock
in period ¢, both of which are known by the decision maker at the beginning of period .
We may omit the time indexes for simplicity, when it is convenient. Let Z' =Z x --- x Z
(¢ times, for reN), Z*=Z x Z x ---,and N =NU {0}. Given z € Z%, z = (zy, 2, .. .),
we denote (z,, 2,1, ...) by ,z and (z,, 2,41, - .., Z/) by ,z,. A similar notation can be used
for x € X*.

The random shocks will follow a time-invariant (stationary) Markov process. More pre-
cisely, a probability density function (p.d.f.) f: Z x Z — R, establishes the dependence
between Z, and Z,,,, such that the process is invariant with respect to ¢. For simplicity
of notation, we will frequently represent Z, and Z,,, by Z and Z', respectively.! We will
assume that f and Z satisfy standard assumptions, as explicitly stated below in Section 3.2.

For any topological space S, we will denote by o (S) the Borel o-algebra. For each
ze Zand A € o(2), define

K(Z,A)E/f(2/|2)d2/,
A

where f(Z'|z) = fzjf‘(iijidz Thus, K is a probabilistic kernel, that is, (i) z — K(z, A) is

measurable for every 4 € o(Z); and (ii) A — K(z, A) is probability measure for every
z € Z. In other words, K represents a conditional probability, and we may emphasize
this fact by writing K(A|z) instead of K(z, A). We will also abuse notation by denoting
K(z,{z:z < z'}) simply by K(z'|z).

3.1.2. Plans

At the beginning of period ¢, the decision maker knows the current state x, and learns
the shock z, and decides (according to preferences defined below) the future state x,,; €
[(x,,z) C X, where T'(x, z) is the constraint set.”> From this, we can define plans as
follows:

2This structure implies, in particular, that the information filtration is fixed throughout.

22This model is very close to the one discussed in Stokey, Lucas, and Prescott (1989, Chapter 9). There are
different, slightly more complicated dynamic models where the state is not chosen by the decision maker, but
defined by the shock. Stokey, Lucas, and Prescott (1989, Chapter 9) discussed how their results can be adapted
to those models. In our setup, this extension may be more involved.
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DEFINITION 3.1: A plan 4 is a profile & = (h,),.y Where, for each ¢ € N, /, is a measur-
able function from X’ x Z to X The set of plans is denoted by H.

The interpretation of the above definition is that a plan 4,(x,, z") represents the choice
that the individual makes at time ¢ upon observing the current state x, and the sequence
of previous shocks z’. The following notation will simplify statements below.

DEFINITION 3.2: Given a plan & = (h,),eny € H, x € X, and realization z*° = (z;,...) €
Z>, the sequence associated to (x, z*°) is the sequence (x"),.0 € X defined recursively
by x! =x and x" = h,_,(x" |, z'~"), for t > 2. Similarly, given h € H, (x,z') € X x Z', the
t-sequence associated to (x, z') is (x])!_, € X" defined recursively as above.

We may write x”(-), x"(x, z'), or x(x, z*°) to emphasize that x” depends on the initial
state x and on the sequence of shocks z*, up to time ¢.

DEFINITION 3.3: A plan 4 is feasible from (x, z) € X x Z if h,(x!, z") e T'(x!, z,) for
every € N and z* € Z* such that x = x and z, = z.

We denote by H(x, z) the set of feasible plans from (x, z) € X x Z. Let H denote the
set of all feasible plans from some point, that is, H =, _)cx,z H (X, 2).

3.1.3. Preferences

Let (2, represent all the information revealed up to time We assume that in time ¢
with revealed information (2,, the consumer/decision maker has a preference =, , over
plans %, i’ € H(x, z), which is represented by a function V;: H x X x Z' — R, that is,

t.24

h/ %l,x,ﬂf h — I/t(l/l/7 X, Zt) = I/t(h/y X, Zt)' (12)

Notice that the preferences in (12) are time, information, and state contingent.
A special case of this model corresponds to the standard case of expected utility, that
is,

Vi(h,x,2") = E[Z B u(xl, x, Z,)|Z' = zt:|, (13)

s>t

where u: X x X x Z — R is the current-period utility function. That is, u(x, y, z) denotes

the instantaneous utility obtained in the current period when x € X denotes the current
state, y € X, the choice in the current state, and z € Z, the current shock.

A first attempt to define the dynamic quantile preference would be to substitute the

expectation operator E by the quantile operator Q, in (13), that is,

Vi x,#)= 0 S ated . 2)| 7= ] (10

s>t
The preference defined by (14) may be referred to as simple quantile preference. Al-
though this seems the natural way to adapt the standard definition, this would lead to

Z1n the expressions below, y(z°) should be understood as just &y € X.
24With the knowledge of a fixed &, £, reduces to the initial state x; and the sequence of shocks z'. More
generally, we could take the sequence of states and shocks (x*, z*).
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dynamically inconsistent preferences, because the analog of the “law of iterated expecta-
tions” does not hold for quantiles; see Example 3.7 below. Instead, we will need to take a
different route. Note that the functions V; defined by (13) satisfy the following recursive
equation:

Vi(h, x,2") = u(x}, x.\, 2.) + BE[Visi(h, x, (2, Z11)) 1 2" = 2']. (15)

We adapt equation (15) by replacing the expectation operator E with the quantile opera-
tor Q,, that is, we impose

Vi(h,x,2") = u(x!, x', z) + BQ:[Visi(h, x, (Z', z1))1 Z' = 2']. (16)

The recursive equation (16) is the building block of our dynamic quantile preferences
and it leads to dynamically consistent preferences, as we show below. This is the reason
why Section 2 provided a detailed justification of recursive equation (16) in the simpler
form of (10).

In Section 3.3 below, we explicitly define a sequence of functions V; that satisfy (16)
and will specify the preferences (12). Nevertheless, before we provide an additional for-
malization for the definition of the sequence of recursive functions, it is useful to build
intuition on how the recursive equation (16) leads to an expression in quantiles that would
be different from the expected utility case, developed from (15).

To see this, let us adopt ¢ = 1 and substitute the expression of V;,; =}, by the expression
in (15) and use superscript E to denote the expected utility case; we obtain

VE(h, x,2") = u(x{, x5, z1) + BE[u(x}, X}, z2) + BE[V; (h, x, 2')| Z, = )1 Z, = z].

Above, we could eliminate the expectation with respect to Z, = z, using the law of iterated
expectations. Since the same simplification is not possible in the quantile case, we will
avoid it here. Moreover, we are able to put all the terms inside the expectations. That is,
we can write

ViE(h, x,2")
= E[E[u(x'f, xg, zl) + Bu(xlg, xgl, zz) + ,BZVZE(h, X, Zt)|Zg = z2]|21 = z]

[ [ [Z,B” X x L z) + BVE(h x, 2) _zg})zz_zz}‘zl_z}

n:an| ""Zl:Zj|7

where there are n expectation operators E and corresponding conditionals Z, = z, in the
last line above. Following the same developments from (16), we obtain

|: [ZB[ ]LL ta z+1,Zt)+B VE(h X, Z)

VleT(h,x,Zt>
= u(x}, x3, z1) + BQ.[u(x}, x5, 22) + BQ. [V, (h, x, 2')| 2 = 2,]1Z) = 2]
= Q [Q [ (-x] ’ x2> Zl) + Bu(xg’ xga 22) + BZI/ZQT(ha X, Zt)|ZZ = ZZ]|ZI = Z]
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3
=Q, |:QT |:QT |:Z B u(xt, x!,, z) + BV (h, x,2') | Zs = z3:| Z, = zz}
t=1

= QT[- - Q[Z B u(xy, x}y, z0) + BV, (h, x, 2') ‘Zn = zn} 5
t=1

where the operator Q,[-] and corresponding conditionals Z, = z, appear n times in the
last line above. In order to simplify the above equation, we will introduce the following
notation:

2122}

(zl =z:|, (17)

where the operator Q, and corresponding conditionals appear n times. Therefore, by
using the notation defined by (18), we are able to rewrite (17) as

Vi (h, x, 2") Q"[ZB’ u(xt, xiyy, z) + BV, (hy x Z)} (19)

The next step is to take the limit as n goes to co. The formalization of such limit will be
made in Section 3.3 below, but one can now intuitively understand the following:

)= 07| Sl | )
t=1

as a notation for an (infinite) sequence of applications of Q’[ - |Z' = z'].
Note that if we introduce an analogous notation of (18), that is, E* for a(n infinite) se-
quence of conditional expectations, because of the law of iterated expectations, we obtain

VIE(h’x’Z EM[ZBI 1” t+1’ :| |:Z'B[ ' t’ t+1’Zf) Z :le|’

which is the expression in (13). Therefore, expression (20) is the corresponding general-
ization of (13): the difference, that is, the fact that we can substitute E* by E but not Q2
by Q., is explained by whether or not the law of iterated expectations holds. Indeed, as
Example 3.7 below shows, this law does not hold for quantiles.

It is worth mentioning that in the particular case in which the z, are independent, (19)
and (20) can be simplified. Notice that independence implies

Qf[u(xt, X+, Z[)|Zt71:| = QT[u(x[’ X115 Zt)]a

which is a number, not a random variable. Being a number, it can be taken out of the
quantile. Thus, (19) simplifies to
VO (h,x,7) Z BQ[u(x!, ", 2)] + BQ [V (h, x, 2')],

and (20) simplifies to

V.o (h, x, z') ZB’ 'Q.[u(x), x]y, z)]-
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3.2. Assumptions

Now we state the assumptions used for establishing the main results. We organize the
assumptions in two groups. The first group collects basic assumptions, which will be as-
sumed throughout the paper, even if they are not explicitly stated. The second group of
assumptions will be used only to obtain special, desirable properties of the value function.

ASSUMPTION 1—Basic: The following properties are maintained throughout the paper:
(i) Z CR*is convex;
(i) f:Z x Z — R, is continuous, symmetric,and f(z,z') > 0, forall (z,z') € Z x Z;»
(iii) X C R? is convex;
(iv) u: X x X x Z — Ris continuous and bounded;
(V) The correspondence T : X x Z = X is continuous, with nonempty, compact, and
convex values.

Note that in the above assumption, property (i) allows an unbounded multidimensional
Markov process, requiring only that the support is convex. Property (ii) imposes continuity
of f, the p.d.f. that establishes the dependence between Z, and Z,,, and requires it to be
strictly positive in the support of the Markov process, Z. The state space &’ is not required
to be compact, but only convex by property (iii). Property (iv) is the standard continuity
assumption. Property (v) and the continuity of u required in property (iv) guarantee that
an optimal choice always exist.

For some results, we will also require differentiability, concavity, and monotonicity as-
sumptions.

ASSUMPTION 2—Differentiability, Concavity, and Monotonicity: The following hold:
(i) Z C Risan interval;
(ii) If h: Z — R is weakly increasing and z < Z', then

/h(a)f(alz)daf/h(a)f(alz/)da; (21)

(i) u: X x X x Z — Ris C, strictly concave in the first two variables and strictly in-
creasing in the last variable;

(iv) Foreveryxe X and z < z/,I'(x,z) CI'(x, 2');

(v) Forallze Zandall x,x' e X,y e '(x, z) and y € I'(x', z) imply

0y + (1—0)y eT[0x+(1—0)x',z], forall 6<][0,1].

To work with monotonicity, we restrict the dimension of the Markov process to k = 1
in Assumption 2(i). Assumptions 2(ii)-2(v) are standard conditions on dynamic models
(see, e.g., Assumptions 9.8-9.15 in Stokey, Lucas, and Prescott (1989)). Assumption 2(ii)
implies that whenever z < 2/,

K(wlz') = /

{aeZ:a<w}

f(alz') daf/ f(alz)da=K(w|z), (22)

{aeZ:a<w)

»Symmetry guarantees stationarity since Pr([Z, € A]) = [, [, f(z1, 2)dzidz = [, [, f(z1, 22) dz1 dz, =
Pr([Z, € A]).
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for all w.?® In other words, K ( - |z') first-order stochastically dominates K( - |z). Assump-
tion 2(iii) allows us to establish the continuity and differentiability of the value function.
Assumption 2(iv) only requires the monotonicity of the choice set. Assumption 2(v) im-
plies that I'(x, z) is a convex set for each (x, z) € X x Z, and that there are no increasing
returns.

It should be noted that monotonicity is also important for econometric reasons. Indeed,
Matzkin (2003, Lemma 1, p. 1345) showed that two econometric models are observation-
ally equivalent if and only if there are strictly increasing functions mapping one to another.
Thus, in a sense, the quantile implied by a model is the essence of what can be identified
by an econometrician.

3.3. The Sequence of Recursive Functions

In this subsection, we define the sequence of functions V] that satisfy (16) and specity
the preferences (12). For this, we need to define a transformation. Let £ be the set of real-
valued functions from X x Z to R and let C C £ denote the set of bounded continuous
functions from & x Z to R, endowed with the sup norm. It is well known that C is a
Banach space. Let us fix 4 € H and 7 € (0, 1), and define the transformation T" : C — L
(the dependency on 7 is omitted) by the following:

T'(V)(x, 2) = u(x}, x5, z1) + BQ,[V (x}, Z,)| Z, = z],

where (x",z;) = (x, z) and x¥ = h(x, z). We show that the image of T" is indeed in C
continuous and that T” is a contraction and, therefore, has a unique fixed point:

THEOREM 3.4: T"(V) is continuous and bounded on X x Z, that is, T(C) C C. Moreover,
T" is a contraction and has a unique fixed point, denoted V" € C.

Now we can define V] as follows:
Vi(h,x,z")=V"(x!, z,),

where (x)!_, is the associated ¢-sequence to (x, z') (see Definition 3.2). From the fact
that " is the unique fixed point of T”, it is clear that (16) holds. This completes the
definition of the preferences (12).

It is possible to write 1" in a more explicit form. For this, let us define

Vin(x, z) = u(x), x4, z1) + Q. [ Bu(xh, x¥, z2) + Q. [ Bru(xh, x!, z3) + -
+ Q,[ﬁnu(xi'ﬂ, x,’;”, Zn)|Zn = Zn] | Zy = Z]

=Q, |: - |:QT |:Z B’u(xfﬂ, xfl+27 Zt) Z,= Z":| . :| ’Zl - Zi|
t=0

= Q'Tl |:Z Blu(xilﬂ’ x?+2’ Zf)j| ’

t=0

%To obtain (22), it is enough to use ~(2) = —1jgez.a<w) (2) in (21).
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where the expression Q”[-] in the last line is just a short notation for the conditional
quantiles applied successively, as shown in the previous line; see (18). With this definition,
we obtain the following:

PROPOSITION 3.5: V" (x, z) =lim,_ . V""(x, z).

Thus, the existence of the limit lim,,_,, V""" (x, z) allows us to define the notation Q%°[-],
that is,

Vix,z)= Q» |:Z 'Btu(xf, xfﬂ, Z,)j|
=0

=u(xy, x5, z1) + Q;[Bu(x}, x}, o) + Q[ Bu(xy, x}, z3) + - -
+ QT[Bn”(st, X,';z, Zn+1) +oe]e ] |2y = 22]|Zl = Z]« (23)

We turn now to verify that this preference is dynamically consistent.

3.4. Dynamic Consistency

Our objective is to develop a dynamic theory for quantile preferences. Thus, the dy-
namic consistency of such preferences is of uttermost importance. In this subsection, we
formally define dynamic consistency and show that it is satisfied by the above defined
preferences. The following definition comes from Maccheroni, Marinacci, and Rustichini
(2006); see also Epstein and Schneider (2003).

DEFINITION 3.6—Dynamic Consistency: The system of preferences =, g, is dynamically
consistent if, for every t and (2, and for all plans 4 and /', h,(-) = h),(-) for all ¥ <t and
n P h for all (2, ,, x, implies /' =, g, . h.

One shows dynamic consistency of the expected utility preferences by appealing to the
law of iterated expectations. Unfortunately, an analogue of such law does not hold for
quantiles, as the following example shows.

EXAMPLE 3.7—Law of Iterated Quantiles: We will define a random variable X such
that

Q.[Q.[X121112] # Q.[X |31, (24)

where 3, D 3 are two o-algebras on (2.
Let 2 ={1,2,3,4} and P({w}) = 1/4 for all w € . Define 3, = {#, 2} and 3, =
{0, E,, E,, 2}, where £, ={1,2} and E, = {3, 4}. Let X(w) = w. Then, for 7 € (0.5, 0.75),

2 ifwek,

QX121 =1, if e E,.

Therefore, Q.[Q.[X|21|30] =4 but Q,[X|30] = Q.[X] =3, which establishes (24).

As one could expect, such failure suggests that quantile preferences would be dynam-
ically inconsistent. This is in fact the case if we adopt the simple quantile preferences
defined by (14). The following example illustrates that dynamic consistency fails for such
preferences. It is very related to the example of Section 2.3.1.
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EXAMPLE 3.8—Reversal of Choices for Simple Quantiles: There exist random vari-
ables X and Y and o-algebras 3; D 3, on (2, such that

Q.[X |2 ) = Q.[Y|21)(w), VYwel, but

(25)
Q:[X 20w < Q:[Y20](w), VYo €l
It is enough to define X and Y as, respectively, U™ and U™ of the example at the end of
Section 2.3.1. Let 2 = [0, 4], 3, = {4, 2}, and 3, be generated by the partition {E,, E,},
where E; = [0, 2) and E, = [2, 4]. Thus, E; = [0, 2) corresponds to the event z; =0 and
E, =[2,4) corresponds to the event z; = 2. From the discussion in Section 2.3.1, (25)
holds.

Note that (25) suggests a potential negation of dynamic consistency for quantile pref-
erences in general. Indeed, this failure would be fatal for dynamic consistency if we had
chosen the preference to seek the maximization of Q,[> -, B'u(x?, xﬁ'ﬂ, z)|Z; = z,], be-
cause changing from one period to the other could imply a reversion of choices, which is
exactly what (25) illustrates. More formally, we can restate the first part of (25) for the

simple quantile preference defined by (14) as follows:
Vo(X) = Q,[X|355] < Q.Y %] = Vy(Y),
while the second part establishes that Vo € (2,
Vi(X, ) = QX120 2 QY311 = Vi(Y, @).

This proves that this preference is not dynamically consistent: the initial preference for Y
is reversed at time 1 in all states of nature.

However, we have adopted as preference Q*[>_ -, B'u(x", fo, z,)], which involves an
infinite sequence of nested conditional quantiles. This is discussed in Section 3.1.3, where
the notation Q?°[-] is introduced. This sequence is exactly what allows to obtain dynamic
consistency. Indeed, in our framework, quantile preferences are dynamically consistent
and amenable to the use of the standard techniques of dynamic programming, as the
following result establishes.

THEOREM 3.9: The quantile preferences defined by (23) are dynamically consistent.

This result is important, because it implies that no money-pump can be used against
a decision maker with quantile preferences. Many preferences that depart from the ex-
pected utility framework do not satisfy dynamic consistency.

To avoid this dynamic inconsistency, we adopted the iterated quantile preference (23).
The following example illustrates Theorem 3.9 and how this recursive structure guaran-
tees dynamic consistency.

EXAMPLE 3.10—Consistency of Choice for Iterated Quantiles: Now we will show that
if instead of the simple quantile preference (14), we use (23), there is no choice reversal.
Let 7, X, Y, and 3, 3, be as in Example 3.8 above and consider the preference defined
by (23). We have

Vo(X) = Q,[QIX31115] = Q.[Q.[YIZ11Z] = Vo(Y)
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and, Vo € (2,
I/l(X7 (L)) = QT[X|21](LU) Z QT[Y|21](0)) = I/I(Y7 (L)).

In other words, X is always preferred to Y and there is no reversal because the sequence
of events is fixed and taken into account.”

Our approach to establish dynamic consistency is similar to that taken by Epstein and
Schneider (2003) for the maximin expected utility dynamic preferences, in the sense that
the filtration of events where decisions are made is fixed. As discussed by Strzalecki (2013,
p. 1048), this is one of the main approaches that have been used to obtain dynamic con-
sistency for different preferences.

We also note that Epstein and Le Breton (1993) essentially proved that dynamic con-
sistent preferences are “probabilistic sophisticated” in the sense of Machina and Schmei-
dler (1992).%® Probabilistic sophistication roughly means that the preference is “based”
in a probability. Extending Machina—Schmeidler’s definition, Rostek (2010) showed that
the static quantiles preferences are probabilistic sophisticated for = € (0, 1). Her obser-
vation is also valid for our dynamic quantile preference. However, we do not use these
developments, since Theorem 3.9 offers a direct proof of dynamic consistency.

3.5. The Value Function

In this subsection, we establish the existence of the value function associated to the
dynamic programming problem for the quantile utility and some of its properties. This is
accomplished through a contraction fixed point theorem.

The first step is to define the contraction operator; this is similar to what we have de-
fined in Section 3.3. For 7 € (0, 1), define the transformation M : C — C as

M™(v)(x,z) = sup u(x,y,z)+ BQT[v(y, w)lz]. (26)

yel'(x,z)

Note that this is similar to the usual dynamic programming problem, in which the ex-
pectation operator E[-] is in place of Q,[-]. The main objective is to show that the above
transformation has a fixed point, which is the value function of the dynamic programming
problem. The following result establishes the existence of the contraction M under the
basic assumptions assumed throughout this paper.

THEOREM 3.11: M is a contraction and has a unique fixed point v™ € C.

The unique fixed point of the problem will be the value function of the problem.
Notice that the proof of this theorem is not just a routine application of the similar
theorems from the expected utility case. In particular, the continuity of the function
(x, z) = Q,[v(x,w)|z] is not immediate as in the standard case. Since v is not assumed
to be strictly increasing in the second argument, it can be constant at some level. Con-
stant values may potentially lead to discontinuities in the c.d.f or quantile functions; see
illustration in Section A.1 in the Appendix. We develop careful arguments and explore a
strictly increasing property of Q,[v(x, w)|z] together with continuity of v to establish the
result; see the proof of Lemma A.5 for further details.

The next step is to establish the differentiability and monotonicity of the value function.

?"In this paper, for simplicity, we assume a fixed filtration. This assumption might be unsuitable for infor-
mation acquisition problems; see, for example, Berk (1997) and Skiadas (1998).
2BSee also Karni and Schmeidler (1991).
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THEOREM 3.12: If Assumption 2 holds, then v" : X x Z — R is differentiable in x, strictly
increasing in z, and strictly concave in an interior point x. Moreover,

T

v au .
axi (x7 Z) = (9_xi('x’y > Z)a

where y* € I'(x, z) is the unique maximizer of (26), assumed to be interior to I'(x, z).

This theorem delivers interesting and important properties of the value function. It
establishes that the value function that one obtains from quantile functions possesses, es-
sentially, the same basic properties of the value function of the corresponding expected
utility problem. The second part of Theorem 3.12 is very important for the characteriza-
tion of the problem. It is the extension of the standard envelope theorem for the quantile
utility case. We adapt Benveniste and Scheinkman’s (1979) argument for showing the
concavity and differentiability of the value function in the expected utility case for the
quantiles. Since the quantile function does not have the convenient properties of the ex-
pectation, Theorem 3.12’s proof relies on the monotonicity of the quantiles together with
the assumption that z is unidimensional (see Assumption 2). This unidimensionality re-
quirement does not seem overly restrictive in most practical applications. For example, it
allows us to tackle the standard intertemporal consumption model, as Section 4 shows.

REMARK 3.13: The result in Theorem 3.11 is related to that in Marinacci and Montruc-
chio (2010). They established the existence and uniqueness of the value function in a more
general setup. Nevertheless, we are able to provide sharper characterizations of the fixed
point v”. In particular, Theorem 3.11 establishes that v” is continuous, and Theorem 3.12,
that it is differentiable, concave, and increasing.

3.6. The Principle of Optimality

This subsection establishes that the principle of optimality holds in our model (Propo-
sition 3.17 below). That is, we show that optimizing period after period, as in the recursive
problem (26), yields the same result as choosing the best plan for the whole horizon of the
problem. In order to do that, we have to complete three tasks. First, we define the prob-
lem of choosing plans. Next, we revisit the recursive problem to establish a result that will
be useful in the sequel. Finally, we show that choosing plans for the entire horizon and
solving the problem step by step as in the recursive problem, lead to the same values.

Let us begin by establishing that the set of feasible plans departing from (x,z) e X x Z
at time ¢ is nonempty. More formally, let us define

H/(x,z)={he H(x,2):3(x,z') € X x Z', with z, = z, such that x}(x, z') = x}.

Thus, H;(x, z) is just H(x, z). We have the following result regarding the set of feasible
plans:

LEMMA 3.14: Forany x e X and t e N, H;(x, z) # (.
This result allows us to define a supremum function as

vi(x,z)= sup Vi(h,x,2). (27)

heH;(x,z)

We first observe that ¢ plays no role in the above equation (27), that is, we prove the
following:
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LEMMA 3.15: Forany t e Nand (x,z) € X x Z,vi(x, z) =vi(x, z).

Thus, we are able to drop the subscript # from (27) and write v*(x, z) instead of v} (x, z).

The next step is to relate v* to v”, the solution of the functional equation studied in the
previous subsection, which was proved to exist in Theorem 3.11 and satisfies the Bellman
equation:

vi(x,2)= sup {u(x,y,2)+BQ.[v"(y, w)lz]}. (28)
yel'(x,z)

In the rest of this section, we will denote v simply by v.

To achieve this aim, we first establish important results relating v in equation (28) to
the policy function that solves the original problem. In particular, the next result allows
us to define the policy function as follows:

LEMMA 3.16: If v is a bounded continuous function satisfying (28), then for each (x, z) €
X x Z, the correspondence Y : X x Z = X defined by

Y(x,2)={yel(x,2):v(x,2) =u(x,y, z) + BQ.[v(y, w)|z]}

is nonempty, upper semi-continuous, and has a measurable selection.

Let ¢ : X x Z — X be a measurable selection of Y. The policy function ¢ generates
the plan h* defined by A/ (z) = y(h,_,(z""), z,) forall z' € Z', t e N.

The next result provides sufficient conditions for a solution v to the functional equa-
tion to be the supremum function, and for the plans generated by the associated policy
function ¢ to attain the supremum.

PROPOSITION 3.17: Let v: X x Z — R be bounded and satisfy the functional equation
(28) and i be defined as above. Then, v = v* and the plan h" attains the supremum in (27).

3.7. Euler Equation

The final step is to characterize the solutions of the problem through the Euler equa-
tion. Let v = v™ be the unique fixed point of M", satisfying (28). By Theorem 3.12, v
is differentiable in its first coordinate, satisfying v, (x, z) = %(x, z) = %(x, y,z) =
Uy, (x,y*, z). l l

Given that we have shown the differentiability of value function, we are able to ap-
ply the standard technique to obtain the Euler equation, as formalized in the following
theorem:

THEOREM 3.18: Let Assumption 2 hold and let h = h" be an optimal plan, as in Propo-
sition 3.17. Assume that xﬁrl € intl'(x", z,), that is, the optima are interior, and z, —
2 (xp, x" ., z,) is strictly increasing. Then, the following first-order condition (called Euler

equation in this setting) necessarily holds for every t e Nand i =1, ..., p:
wy, (%7, X715 20) + BQ,[ua, (X715 X705 2is1) 2] = 0. (29)

In the expression above, u, represents the derivative of u with respect to (some of the
coordinates of) its second variable (y) and u, represents the derivative of u with respect
to (some of the coordinates of) its first variable (x).
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Theorem 3.18 provides the Euler equation, that is, the optimality conditions for the
quantile dynamic programming problem. This result is the generalization of the tradi-
tional expected utility to the quantile utility. The Euler equation in (29) is displayed as an
implicit function; nevertheless, for any particular application, and given utility function,
one is able to solve it explicitly as a conditional quantile function.

The proof of Theorem 3.18 relies on a result about the differentiability inside the quan-
tile function. Indeed, if % is differentiable and the derivative j_ﬁ (x, Z) is integrable, then

J E[h(x, 2)] = E[jh

1

(x,Z)i|, but aQT[h(x,Z)];éQT[%(x,Z)],

Xi i i

in general. However, we are able to establish this property under some assumptions. We
are not aware of this result in the theory of quantiles, and given its usefulness, we state it
here:

PROPOSITION 3.19: Let X C R? be a neighborhood of x, Z C R is an interval, and assume
that h : X x Z — R is continuously differentiable in x and continuous in z, and that h and d
are increasing in z,where d(z) = h(x}, x_;, z) — h(x;, x_;, z) for x;, x| satisfying 0 < x'; —x; <
€, for some small € > 0. Then,

JQ;,
r?x,-

oh
[h(x,2)] = QT[&—x(x, Z)]

The two conditions in the above result appear frequently in economic models. To see
this, consider the following corollary:

COROLLARY 3.20: Assume that h: R*> — R is C*. If

2
dh(x, z) >0 and O h(x, z) >0, (30)
Jdz 0xdz
then,
0Q, _ oh
— [h(x,2)] = Qf[a(x, Z)]. (31)

One can show that (30) implies that 4 (x, z) and d(z) = h(x’, z) — h(x, z) are increasing
in z for x’ > x. In particular, (30) is easy to check and implies that /4 is supermodular,
which is a property widely used in economics.

To see that (30) is natural in dynamic models, consider the following particular example.
In each period ¢, the consumer decides how much to consume ¢, and save for the next
period, x,,, up to the wealth available in period ¢, which is given by the amount saved
in the previous period x,, multiplied by the shock z,. That is, the budget equation is ¢, +
X1 < X,z;, which leads to ¢, = x,z, — x,,,. If we define u(x,, x,,1, z,) = x,z, — x,;, and fix
y, then h(x, z) = u(x, y, z) = xz — y clearly satifies (30).%%*

P1t is not difficult to see that h(x, z) = U(xz — y) satisfies (30) for any U sufficiently close to a linear
function.
3In fact, it is useful to illustrate why (31) is valid for this A:

g _9 N = _o[GZ=-»]_y[%h
0. [h(x, 2)] = S-QulxZ =yl = = (xQ.1Z] y)_QT[Z]_QT[ — ]_Q,[(;xu,b].
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4. APPLICATION: INTERTEMPORAL CONSUMPTION MODEL

This section illustrates the usefulness of the new quantile utility maximization methods
through an empirical example. We apply the methodology to the standard intertempo-
ral allocation of consumption model, which is central to contemporary economics and
finance. It has been used extensively in the literature and has had remarkable success
in providing empirical estimates for the study of the elasticity of intertemporal substi-
tution (EIS) and discount-factor parameters. We refer the readers to Campbell (2003),
Cochrane (2005), and Ljungqvist and Sargent (2012), and the references therein, for a
comprehensive overview.

There is a large empirical literature that attempts to estimate the EIS; among others,
Hansen and Singleton (1983), Hall (1988), Campbell and Mankiw (1989), Epstein and Zin
(1991), Blundell, Browning, and Meghir (1994), Attanasio and Browning (1995), Atkeson
and Ogaki (1996), Campbell and Viceira (1999), and Yogo (2004). The majority of the
literature relies on the traditional expected utility framework.

4.1. Economic Model

We employ a variation of Lucas’s (1978) endowment economy (see, also, Hansen and
Singleton (1982)). The economic agent decides on the intertemporal consumption and
savings (assets to hold) over an infinite horizon economy, subject to a linear budget con-
straint. The decision generates an intertemporal policy function, which is used to estimate
the parameters of interest for a given utility function.

Let ¢, denote the amount of consumption good that the individual consumes in period ¢.
At the beginning of period ¢, the consumer has x; units of the risky asset, which pays
dividend z,. The price of the consumption good is normalized to 1, while the price of
the risky asset in period ¢ is p(z,). Then, the consumer decides how many units of the
risky asset x,,; to save for the next period, and its consumption ¢,.*! Using the notation
introduced in (23), we can write the consumer problem as*

max Q% |:Z ,B’TU(CZ):|, (32)
()2 Py
subject to
¢+ p(z)x < [Zt + P(Zt)] * Xt (33)
Cry Xpy1 = O, (34)

where B, € (0, 1) is the discount factor for the quantile = € (0, 1) of interest, and U :
R, — R is the utility function. Note that 3, is written with a subscript 7, to emphasize
the fact that we may have a different parameter for each 7 € (0, 1). Because there is a
single agent, the holdings must not exceed one unit. In fact, in equilibrium, we must have
x;,=1,Vt,k.Let x > 1 and X =0, x].

3n this model, for simplicity, the state variable next period, x,,1, does not depend directly on the shock
next period, z,,;. In such a case, the model resolution is more involved, and a law of motion for the endogenous
state variable needs to be defined.

PRecall (23): QXY BLu(c)] = ucy) + Q:IB,U(c) + Q:IB2U(c) + QuIBU (c3) + - - [2]1 2111 2].
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From (33), we can determine the consumption entirely from the current and future
states, that is, ¢, = z, - x, + p(z,) - (x, — x,;1). Following the notation of the previous sec-
tions, we denote x, by x, x,,; by y, and z, by z. Then, the above restrictions are captured
by the feasible correspondence I' : X x Z — X = & defined by

F'(x,2)={yeX:p(2)-y<(z+ p2)) - x}.
For each pricing function p : Z — R, define the utility function as
ux,y,z)=Ulz-x+ p(z)- (x — y)].

We assume the following:

ASSUMPTION 3: (i) Z C R, is a bounded interval and X = [0, x];

(i) U:R, — Risgiven by U(c) = ﬁcl’y,for v>0,y#1;

(iii) z follows a Markov process with pdf f : Z x Z — R, which is continuous, symmet-
ric, f(z,w) > 0, for all (z,w) € Z x Z and satisfies the property: if h: Z — R is weakly
increasing and z < z', then

/ h(a)f(alz)da < / h(a)f(al2') da;
(iv) z+> z+ p(z) is C' and non-decreasing, with z(In(z + p(z2)))' > 7.

Assumptions 3(i)—(ii) are standard in economic applications. Assumption 3(ii) specifies
an isoelastic utility function (constant elasticity of substitution—CES). This is a standard
assumption in a large body of the literature, as for example, among others, Hansen and
Singleton (1982), Stock and Wright (2000), and Campbell (2003). Assumption 3(iii) states
that the idiosyncratic shocks follow a Markov process and that a high value of the divi-
dend today makes a high value tomorrow more likely. It implies Assumption 2(ii). As-
sumption 3(iv), z — z + p(z) is non-decreasing, is natural. It states that the price of the
risky asset and its return are a non-decreasing function of the dividends. Note that it is
natural to expect that the price is non-decreasing with the dividends, but Assumption 3(iv)
is even weaker than this, as it allows the price to decrease with the dividend; only z + p(z)
is required to be non-decreasing.*®

Given Assumption 3, we can verify the assumptions for establishing the quantile utility
model in the intertemporal consumption model context. Thus, we have the following:

LEMMA 4.1: Assumption 3 implies Assumptions 1 and 2 and that z, — j—;(xf, xﬁﬁr], z,) IS
strictly increasing.

Therefore, Theorems 3.11 and 3.12 imply the existence of a value function v, which is
strictly concave and differentiable in its first variable, satistying

v(x,z)= max {U[z-x+ p(2) - (x — y)] + B.Q.[v(y, Z)Iz]},

yel'(x,z)

%In our data set, when regressing the returns on the dividends, we find a statistically positive correlation.
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where j—)’j = % Note that
u ,
@y =U [z-x+ p(2)- (x = »)](z+ p(2));
P
&—;‘u,y, H=U[z x+ p(2)- (x - »](=p(2).

Because, in equilibrium, the holdings are x, = 1 for all ¢, we can derive the Euler equa-
tion as in (29) for this particular problem to obtain

—-p(z)U'(¢;) + BTQT[U/(Ct+1)(ZI+1 + P(Z[+1))|Qz] =0. (35)
Let us define the return by 1 +r,; = %j*”. Assumption 3(i) implies that the ratio

of marginal utilities can be written as % = (C’C—j])*y. Thus, the Euler equation in (35)
simplifies to

c —Yr
QT[BT(1+'}+1)(;—H> _1’Qti| =0. (36)
t
Now, for illustration purposes, we compare the quantile utility maximization results
with the corresponding ones for the expected utility, which can be written as

max E|:Z BtU(c,):| ,
(€2 P

subject to the same constraints in (33)—(34). This problem can be rewritten and the asso-
ciated value function is

v(x,z)= max {U[z-x+ p(z) - (x — y)] + BE[v(y, 2)Iz]}.

yel'(x,z)

Finally, the corresponding Euler equation can be expressed as

—pz)U' () + BE[U,(CH~1)(ZL‘+] + p(zt+1))|‘(2t] =0,

and by rearranging the previous equation, we obtain

-
E[B(l—#rm)(%) —1)01] ~0. (37)
t

When comparing the Euler equations in (36) and (37), one can notice similarities and
differences. The expressions inside the conditional quantile in (36) and the conditional
expectation in (37) are practically the same, except that, for the quantile model, the pa-
rameters (SB,, v.) depend on the quantile 7. That is, for each 7, we may have (potentially)
different parameters.

4.2. Estimation

The previous section derives the Euler equation for the quantile utility model. Now we
describe how to estimate the vector of parameters of interest. The basic idea underlying



1920 L. DE CASTRO AND A. E GALVAO

the estimation strategy is to use the theoretical economic model to generate a family of
nonlinear conditional quantile functions, and apply the method of moments instrumental
variables (IV) quantile regression (QR) for nonlinear models developed in de Castro,
Galvao, Kaplan, and Liu (2019).*

For a given parameterized utility function, one is able to isolate the implicit quantile
function defined by equation (29). In particular, (36) can be written as the following non-
linear conditional quantile model:

Qr[m(ct,rt, 001’)"{21] :Oa (38)

where 7 € (0,1) is a quantile of interest, m(c,, r;, 0y,) = B-(1 + r,+,)(c’7+t1)*% — 1, with
0. = (B,,v.)" € BCR? and {2, denoting the o-field that contains the information up to
time ¢. The vector (¢, r,;, w,) contains the observable variables, with consumption ¢, € ),
the real return on the asset r, € X, the full instrument vector w, € W. The quantile model
in (38) is valid for each given quantile 7. We aim to estimate the parameters 6,, that
describe the Euler equation for specified quantiles of interest.

The model in (38) can be represented by non-smooth conditional moment restrictions
as

E[7 — 1{m(c,, 1, 6.) <0} |w,] =0, (39)

where 1{-} is the indicator function. Since E[1{m(c,, r;, 0y.) < 0}jw,] = F[m(c,, r;, 0y,)|w,],
when F[-] is invertible, one is able to recover (38) from (39).

For a given quantile index 7, estimation of the parameter vector 6y, uses the method of
moments. Rewrite (39) as the following moment condition:

E[w,[l{m(c,, Ity 0pr) < 0} - T]] =0, (40)

where instruments, w,, are used to achieve a valid orthogonality condition.
We now present the smoothed instrumental variables quantile regression (SIVQR) es-
timator. Let the population map M : B x T + R? be

M (6, ) =E[g/(6,7)], (41)
g?(67 T) Egu(cta rt7 wt’ 07 T) = wt[l{m(ch rt7 0) S 0} - T]a (42)

[T 2]

where superscript “u” denotes “unsmoothed.” The population moment condition (40) is
M(6,,,7)=0. (43)

The method of moments is constructed by replacing the population moments, the ex-
pectation E[-], with their corresponding sample expectation E[-], that is, the sample aver-
age. Analogously to (41), using (42), the unsmoothed sample moment map is

_ - 1 —
M0, 7) =E[g"(c,r,w, 0,1)] = = > (6, 7). (44)
=1

31t has been standard in the literature to estimate Euler equations derived from the expected utility models.
It is an important exercise to learn about the structural parameters that characterize the economic problem
of interest. After parameterizing the utility function, the restrictions imply a conditional average model and
the parameters are commonly estimated by the generalized method of moments (GMM) of Hansen (1982).
Estimation and inference of GMM have been discussed by, among many others, Newey and McFadden (1994),
Chen, Linton, and van Keilegom (2003), Chen and Pouzo (2009), and Chen and Liao (2015).
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Even if population system (43) has a unique solution, the unsmoothed system ]\7;(0, T)=
0 may have zero or multiple solutions. Although this issue can be overcome theoretically,
smoothing addresses it directly. The SIVQR estimator is the solution to the system of
smoothed sample moments. With smoothing (no “u” superscript), the sample analogs of
(41), (42), and (43) are

gri(0,7) = gr(ci, 1wy, 0, 7) =w,[I(—m(ci, 1, 0)/ hr) — 7],

_ 1 < (45)
My(8,7) == gn(6,7),

t=1

MT(éT7T):O7 (46)

where A7 is a bandwidth (sequence), I(-) is a smoothed version of the indicator func-
tion 1{- > 0}, and /(-) may stand for “indicator-like function” or “integral of kernel.” An
example function /(-) is the integral of a fourth-order polynomial kernel.

Finally, given a random sample {(c,, ,, w,) : t =1, ..., T}, the parameters 6, can be es-
timated by (45) and (46). The objective function depends only on the available sample in-
formation, the known function m(-), and the unknown parameters. Solutions of the above
problem are denoted by ,, the SIVOR estimator. de Castro et al. (2019) discussed and
gave conditions for identification of the parameters of interest, and considered estima-
tion and inference with weakly dependent data. The parameter 6, is “locally identified”
if there exists a neighborhood of 6, in which only 6, satisfies (40). This property holds if
the partial derivative matrix of the right-hand side of (40) with respect to the 6 argument
is full rank.* In addition, de Castro et al. (2019) established the asymptotic properties of
the SIVQR estimator.

PROPOSITION 4.2—de Castro et al. (2019): Under standard regularity conditions,as T —
o0, the estimator is consistent, that is, 0, - 0y, and

VT, - 6,,) 5> N(0,G'35,,.[G]),

Where ZM — 11mT—>oc Var(T 172 Zthl th(001'7 T))) G = rJGT E[wtl{m(ct7 Ty, Wy, 0) =
0}l o=g,, = E[w,de(Olwt, d)l, d, = Vem(c,, 1, 0y,), and fm|w «(lw, d) is the conditional
pdf of m, given w,=wand d, =d.

Given the result in Proposition 4.2, one is able to estimate the variance-covariance
matrix and conduct practical inference. One is also able to apply the SIVQR methods
and estimate (y,, B,) across different quantiles by simply varying 7. One advantage of
the quantile Euler equation is that it may be log-linearized with no approximation error,
differently from the standard Euler equation. Thus, we use a model as Q,[—In(c,,;/¢;) +
vy ' In(B;) + v, In(1 +r41)12,]1 = 0. From In(B,) /7y, and 1/v,, we are able to recover the
parameters of interest.

REMARK 4.3: In this paper, we are interested in estimating the conditional quantile
functions to learn about the potential underlying heterogeneity among quantiles. Never-
theless, it is possible to see the quantile 7 as a parameter to be estimated together with

#]dentification for general nonlinear semiparametric and nonparametric conditional moment restrictions
models is presented in Chen et al. (2014).
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the parameters 6y,. Bera, Galvao, Montes-Rojas, and Park (2016) developed an approach
that delivers estimates for the coefficients together with a representative quantile.In their
framework, 7 captures a measure of asymmetry of the conditional distribution of interest
and is associated with the “most probable” quantile in the sense that it maximizes the
entropy.

4.3. Data

We use a data set that is common in the literature. We use monthly data from 1959:01
to 2015:11, which produces 683 observations. As is standard in the literature (see, e.g.,
Hansen and Singleton (1982)), two different measures of consumption were considered:
nondurables, and nondurables plus services. The monthly, seasonally adjusted observa-
tions of aggregate nominal consumption (measured in billions of dollars unit) of non-
durables and services were obtained from the Federal Reserve Economic Data. Real per
capita consumption series were constructed by dividing each observation of these series
by the corresponding observation of population, deflated by the corresponding CPI (base
1973:01).

Each measure of consumption was paired with four sets of stock returns from the Cen-
ter for Research in Security Prices (CRSP) U.S. Stock database, which contains month-
end prices for primary listings for the New York Stock Exchange (NYSE). We use the
equally-weighted average of returns (EWR) (including and excluding dividends) on the
NYSE. The nominal returns were converted to real returns by dividing by the deflator
associated with the measure of consumptions. Instruments include lags of log real con-
sumption growth, nominal interest rate, and inflation. We use two instruments (similar to
the excluded instruments used in Yogo (2004)): the linear projection of the real interest
rate and log consumption growth onto a constant and nominal interest rate, inflation, and
lagged log consumption growth. All instruments are lagged twice to avoid problems with
time aggregation in consumption data.

4.4. Results

Before we present the estimation results, it is important to discuss the interpretation
of the parameters of interest (8., 1/v,). We notice that, as discussed in Section 2.3, it is
possible to separate the risk attitude from the intertemporal substitutability in the quan-
tile model. First, the present notion of risk preference differs in several respects from the
one familiar in the expected utility literature. The quantile T captures the risk attitude in
the model. Given that the notion of risk attitude is comparative and captured by varying
the quantile index, we estimate the model for several different quantiles. Thus, an impor-
tant point in the application is to compare estimates across quantiles, that is, different
measures of risk. Second, for a given quantile 7, B, is the usual discount factor. Finally,
from the discussion in Section 2.3 and equation (32), one can notice that the parameter
1/, captures the standard measure of EIS implicit in the CES utility function. Thus, by
employing the quantile maximization model, for each specific risk attitude 7, we are able
to estimate the associated discount factor and EIS.

Now we present the empirical results. For comparison purposes, we also report results
for the standard conditional average instrumental variables regression by two stage least
squares (TSLS), which estimates the parameters for the expected utility model. The re-
sults for the estimates of the parameters at different quantiles are reported in Table I
and Figure 3. We present estimates using consumption of nondurables and stock return
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TABLE I

SIVQR AND TSLS ESTIMATES FOR DISCOUNT FACTOR AND EIS*

EWRwo EWRw
T Br 1/yr Br 1/ys
0.1 1.156 0.105 1.147 0.110
(0.21) (0.02) (0.19) (0.02)
0.2 1.061 0.165 1.059 0.158
(0.03) (0.02) (0.20) (0.09)
03 1.033 0.190 1.028 0.194
(0.02) (0.03) (0.05) (0.07)
0.4 1.006 0.380 1.003 0.366
(0.01) (0.18) (0.01) (0.17)
0.5 0.991 0.314 0.989 0.350
(0.01) (0.04) (0.01) (0.10)
0.6 0.979 0.543 0.974 0.199
(0.01) (0.27) (0.04) (0.07)
0.7 0.968 0.836 0.963 0.505
(0.02) (1.12) (0.04) (0.41)
0.8 0.802 0.159 0.844 0.183
(0.53) (0.07) (0.91) (0.19)
0.9 0.806 0.300 0.725 0.159
(0.13) (0.09) (0.46) (0.05)
TSLS 0.992 0.203 0.989 0.204
(0.03) (0.19) (0.04) (0.18)

2 This table shows coefficients returned from applying SIVQR and TSLS
methods to estimate the Euler equation. Standard errors in parentheses. The
smoothing bandwidth is 4 = 10~4 for EWRwo and / = 103 for EWRw.
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with and without dividends. The panels on the left display the estimates for EWR exclud-
ing dividends (EWRwo), and the right panel including dividends (EWRw). The results
for consumption nondurables plus services are qualitatively similar; for brevity, we omit
them.

First, we consider the estimates of the discount factor using EWRwo. The results show
empirical evidence that estimates of the discount factor are decreasing across quantiles.
For the upper quantiles, the estimates are close to 0.80. Table I shows that, for low quan-
tiles, the discount factor estimates are larger than 1. Nevertheless, Epstein and Zin (1991,
p. 282) also estimated a discount factor larger than 1. Overall, Table I shows evidence that
the discount factor is relatively smaller for upper quantiles (more risk preferring). The
results for the TSLS case are consistent with the literature and show a discount factor of
0.992.

Next, we consider the estimates of the EIS, 1/vy,. The left panels in Table I and Figure 3
present the results using EWRwo. The first interesting observation is that the results doc-
ument evidence of heterogeneity in EIS across quantiles, while the TSLS provides an es-
timate of 0.203. In particular, the table shows that, overall, the EIS increases across quan-
tiles, especially for 7 € (0.1, 0.7), such that EIS is relatively larger for upper quantiles.
The smaller EIS, for low quantiles (less risk preferring), means less sensitivity to changes
in intertemporal consumption. There is an existing literature exploring whether the EIS
varies with the level of consumption (or wealth) which rejects the constant-EIS hypoth-
esis (Blundell, Browning, and Meghir (1994); Attanasio and Browning (1995); Atkeson
and Ogaki (1996)). In this illustration, we shed light on the discussion and allow the EIS
to vary with the risk attitude, indexed by the quantile.

The right panels in Table I and Figure 3 display the estimates when considering EWRw.
They serve as a robustness check. The results are qualitatively similar to those in the left
panel and Figure 3. The coefficients of EIS present variation over the quantiles. The
discount factor estimates also present heterogeneity, especially for upper quantiles. The
discount factor is smaller for larger quantiles (more risk taking).

REMARK 4.4: It should be noted that our model does not control for income or wealth.
Thus, the agents that maximize low quantiles do not necessarily correspond to low in-
come. Instead, those agents dislike risk more than agents that maximize high quantiles.
This observation is important to avoid confusion with the results in a branch of the liter-
ature that links discount factors with income and wealth (see, e.g., Hausman (1979), and
Lawrance (1991)). Moreover, there is empirical evidence that documents small discount
factors estimates. This literature estimates discount factors by using a quasi-hyperbolic
discount function (see, e.g., Paserman (2008), and Fang and Silverman (2009)). In con-
trast to these streams of literature, this paper abstracts from a relationship between dis-
count rates and poverty and employs a simple model to estimate the discount factor. Our
objective is to illustrate the potential empirical application of the quantile utility maxi-
mization model. We leave the connection with income and wealth and related extensions
for future research.

In all, the application illustrates that the new methods serve as an important alternative
tool to study economic behavior. The methods allow one to estimate the discount factor
and EIS at different levels of risk attitude (quantiles). Our empirical results document
heterogeneity in both discount factor and EIS across quantiles.
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5. SUMMARY AND OPEN QUESTIONS

This paper develops a dynamic model of rational behavior under uncertainty for an
agent maximizing the quantile utility function indexed by a quantile 7 € (0, 1).** More
specifically, an agent maximizes the stream of future r-quantile utilities, where the quan-
tile preferences induce the quantile utility function. We show dynamic consistency of the
recursive quantile preferences and that this dynamic problem yields a value function, us-
ing a fixed point argument. We also obtain desirable properties of the value function. In
addition, we derive the corresponding Euler equation.

Empirically, we show that one can employ existing general instrumental variables non-
linear quantile regression methods for estimating and testing the rational quantile models
directly from stochastic Euler equations. An attractive feature of this method is that the
parameters of the dynamic objective functions of economic agents can be interpreted as
structural objects. Finally, to illustrate the methods, we construct an intertemporal con-
sumption model and estimate the implied discount factor and elasticity of intertemporal
substitution (EIS) parameters for different quantiles. The results provide evidence that
both discount factor and EIS vary across quantiles.

Many issues remain to be investigated. An interesting direction for future study would
be to generalize our model to the case where the future state is randomly defined in-
stead of directly chosen. Extensions of the methods to general equilibrium models pose
challenging new questions as how to endogenize prices, balance supply and demand, and
describe an efficient allocation of goods and services in the economy. In addition, aggre-
gation of the quantile preferences is also a critical direction for future research. Another
important avenue is to investigate the relationship between the quantile utility model and
more general rank-dependent models of choice under uncertainty proposed by Quiggin
(1982) and Yaari (1987). Applications to asset pricing, consumption models, and scenario-
based analysis would appear to be a natural direction for further development of quantile
utility maximization models.

APPENDIX

Given a random variable (r.v.) X, let Fx (or simply F) denote its cumulative distribu-
tion function (c.d.f.), thatis, Fy (a) = Pr[X < a]. If X is clear from the context and we can
omit it, the quantile function Q : [0, 1] — R =R U {—o00, +0o0} is the generalized inverse
of F:

O(r) = inf{aeR:F(a)ZT} if 7€ (0,1],
()= sup{a e R: F(a) =0} if 7=0.

The definition is special for 7 = 0 so that the quantile assumes a value in the support
of X.3 It is clear that if F is invertible, that is, if F is strictly increasing, its generalized
inverse coincides with the inverse, that is, Q(7) = F~'(7). Usually, it will be important
to highlight the random variable to which the quantile refers. In this case, we will denote
Q(1) by Q,[X]. For convenience, throughout the paper, we will focus on 7 € (0, 1), unless
explicitly stated.

3The extension of the results to the cases 7 =0 and 7 = 1 are left for future research.
¥Indeed, inf{a € R : F(a) > 0} = —o0, no matter what is the distribution.
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FIGURE 4.—c.d.f. and quantile function of a random variable.

A.1. Properties of Quantiles

Figure 4 illustrates the c.d.f. F of a random variable X, and its corresponding quantile
function Q(7) = inf{a € R: F(a) > 7}, for 7 > 0.3 In this case, X assumes the value 3
with 50% probability and is uniform in [1, 2] U [4, 5] with 50% probability. This picture
is useful to inspire some of the properties that we state below. Note, for instance, the
discontinuities and the values over which the quantile is constant.

The following lemma is an auxiliary result that will be helpful for the derivations below.

LEMMA A.1: The following statements are true:
(i) Qisincreasing, thatis, 7 <7 = Q(7) < Q(7).
(i) lim, ; Q(7) > O(4).
(iii) Q is left-continuous, that is, lim.; Q(7) = Q(7).
(iv) Pri{z:z < Q(m)}] <7 <Prl{z:z < Q(1)}] = FIQ(7)].
v) If g: R — R is a continuous and strictly increasing function, then Q,[g(X)] =
2(Q,[XD).
(vi) If g, h : R — R are such that g(a) < h(a), Va, then Q,[g(Z2)] < Q.[h(Z)].
(vii) F is continuous if and only if Q is strictly increasing.
(viii) F is strictly increasing if and only if Q is continuous.

PROOF: (i) Let us first assume 7> 0. If 7 <7, then {a e R: Fz(a) > 7} D {a e R :
F;(a) > 7}. This implies Q(7) < Qz(7). Next, if sup{a € R: Fz(a) = 0} = —o0, there
is nothing else to prove. If sup{a € R: Fz(a) =0} = x € R, then Fz(x — €) =0 for any
€>0.Let 7>0. Then, ye{a € R: Fz(a) > 7} = y > x — €, which in turn implies
07(7) = x — e. Since € > 0 is arbitrary, this implies Q(7) > x = Q(0), which concludes
the proof.

(ii) From (i), lim,; Qz(7) > inf,.; Q.(7) > Q,(7). Figure 4 illustrates (e.g., for 7 = 0.25)
that the inequality can be strict.

(iii) From (i), we know that lim,,; Q(7) < Q.(7). For the other inequality, assume that
lim,; Qz(7) + 2€ < Q.(7) < oo, for some € > 0. This means that for each k € N, we can
find o* € {a: Fz(a) > 7 — 1} such that (7 — 1) <o < Qz(F— 1) +€ < 0z(7) —e. We
may assume that {a*} is an increasing sequence bounded by Q.(7) and thus converges
to some @ € R. Then, lim; Qz(7) <& < 0.(7) — € < Q.(7). Since Fz(a*) > 7 — % and
F, is upper semi-continuous, Fz(a) > 7, which implies that & > Q7(7), a contradiction.
Now, assume that Q,(7) = oo. Since lim,_, ., Fz(a) =1, the set {a € R: F;(a) > 7} is non-
empty for all 7 < 1, that is, Q(7) < oo for all 7 < 1. Thus, 7 =1. If lim,4; Qz(7) =x € R,

BFor 7=0, Q(0) = sup{a € R: F(a) = 0} is just the lower limit of the support of the variable.



DYNAMIC QUANTILE MODELS OF RATIONAL BEHAVIOR 1927

then F;(x 4+ 1) > 1 — € for all € > 0, which implies that F,(x +1) =1and Q,(1) <x +1,
a contradiction.

(iv) As above, if Q;(7) = oo, then 7 = 1, which implies 1 = Pr[{w: z < oo}] = Pr[{w:
z < oo}] and there is nothing to prove. Let @ = Q(7) < oo. If &* | @ is such that F,(a*) >
7, then Fz(&) > 7, by the well-known upper-semicontinuity of F,. Thatis, 7 < Fz[Q7(7)].
For the other inequality, let of + @ = Q(7). Since of < @, then Pr[Z < of] < 7, by the
definition of &. Thus, Pr[Z < a*] <Pr[Z < af] < 7 and Pr[Z < &] < sup, Pr[Z < &*] < 7.

(v) The proof is direct as follows:

Q,[g(2)] =infla e R: Pr[g(Z) < a] > 7}

=infla eR: Pr[Z < g_l(a)] > T}

{
infla e R: g™ (a) = B, Pr[Z < B] = 7}
= inf{g(B) : PrZ < Bl > 7}

= g(inf{B: Pr[Z < B1 = 7})

= g(Q:[Z2]).

(vi) Since g < h, thenfor any a, {z: g(z) < a} D {z: h(z) < a}, which implies Fy 2, (a) =
Prig(Z) <a] = Pr[h(Z) <al=Fyz(a). f 7>0,{a e R:Pr[g(Z) <a]>7} D2 {aeR:
Pr[h(Z) < a] > 7}. Taking infima, we obtain Q) (7) < Q7 (7). On the other hand, {a €
R : Fyz(a) =0} C {a € R: Fyz(a) =0} and taking the supremum in both sides, we
obtain the same conclusion.

(vii) Assume that F is discontinuous at x,, that is, lim,, F7(x) = yo < y1 = Fz(xy).
If yo <y, < y3 <y, then Qz(y,) = infla : Fz(a) > y} = infla: Fz(a) > y3} = 0z(y3),
that is, Q7 is not strictly increasing. Conversely, assume that Q is not strictly increasing,
that is, there exists y, < y; such that Q;(y,) = Q(y;) = x. By definition, this means that
Fz(x —€) <y, < y3 < Fz(x + €), for all € > 0. But this implies that F; is not continuous
at x.

(viii) Suppose that F is not strictly increasing, that is, there exists x; < x, such that
Fz(x1) = Fz(x;) = y. Then, Qz(y — €) = infla: Fz(a) >y — €} < x; < x; < inf{a :
F,(a) > y+ €} =0z(y+ €). Thus, QO cannot be continuous at y. Conversely, assume
that O is not continuous at y,. Since Q7 is increasing by (i) and left-continuous by (iii),
this means that Qz(yy) = xo < x; =lim,,, Q(y). If xo < x, < x4, then F(x,) <y, oth-
erwise limym Qz(y) < X,. By (iV), we have Yo =< Fz(Qz(yo)) = Fz(XO) < Fz(xZ) < Yo, that
is, F7 is not strictly increasing between x, and x,. QE.D.

Let O be a set (of parameters) and g : ® x Z x Z — R be a measurable function. We
denote by Q,[g(#6, -)|z] the quantile function associated with g, that is,

Q.[g(6,)|z] =infla e R: Pr[(g(0, W) < )| Z =z] > 7}. (47)

The following lemma generalizes equation (1) to conditional quantiles.

LEMMA A.2: Let g: 0@ x Z — R be non-decreasing and left-continuous in Z. Then,

Q.[g(6, )1z] = g(6, Q. [w]z]). (48)
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FIGURE 5.—c.d.f. and quantile function of the random variable g,.

It is useful to illustrate the above result with an example. Let us define the function
8a» 2 [1,5] > R by

7 ifx<a,
gab(x): b ifx:a,
10 ifx > a.

The function g,, thus defined is non-decreasing if b € [7, 10] and it is left-continuous if
b=1.

Consider the r.v. X whose c.d.f. F and quantile function Q are shown in Figure 5 above.
Let F,, and Q,, denote respectively the c.d.f. and quantile functions associated to g,,(Z).
Figure 5 shows Q,[g.,(w)|z] and g.,(Q.[w]|z]) for a € [1,5] and b € [7, 10]. The point of
discontinuity is a function of a (h(a) € [0, 1]).

PROOF OF LEMMA A.2: For a contradiction, let us first assume that
Q.[g(8,)1z] > g(6, Q,[wl|z]) = a.
This means that & ¢ {« € R: Pr[{w: g(0, w) < a}|z] > 7}, that is,
Pr[{w:g(6,w) <a}lz] <.

Since & = g(0, Q,[w|z]) and g is non-decreasing in w, {w: w < Q. [w|z]} C{w: g(h, w) <
a}. Thus, Pri{w: w < Q,[w]|z]}|z] < 7, but this contradicts Lemma A.1(iv).
Conversely, assume that

Q.[g(0,)1z] < g(6, Q.[wz]).
This means that there exists @ < g(6, Q,[w|z]) such that
Pr[{w:g(6,w) <a}lz] >

Let w be the supremum of the set {w: g(6, w) < &}. Since g is non-decreasing and left-
continuous, g(0, w) < @. Moreover,

Pr[{w:w < w}|z] =Pr[{w: g(8, w) <a}lz] = 7.

Thus, w € {& € R: Prl{w : w < a}|z] > 7}, which implies that w > Q.[w]|z]. Thus, @ >
g(0,w) > g(6, Q,[w|z]) > a, which is a contradiction. O.E.D.
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The following corollary to the above lemma will be useful.

COROLLARY A3: Let Te NU{oo), h:O x ZT x Z >R, g: A x ZT x Z — R be
non-decreasing and left-continuous in Z. Then,

QT[h(07 ZT: QT[g(A) ZT7 Zt+1)|Zt])|Zl] = Q’T[h(07 ZT; g()\’ ZT7 QT[Zt+1|Zt]))|Zl]'

PROOF: Let X denote the random variable Q.[g(A, z', z,,1)|z,] and similarly, let Y
denote g(A,z', Q,[z,1]z,]). Then, by Lemma A.2, X = Y. Therefore, h(0,z',X) =
h(0, z',Y) and the result follows. Q.E.D.

The following result will be useful below. It shows that an important property of
comonotonic random variables is the behavior of the quantile functions of their sums.

PROPOSITION A.4: Given the random variables X and Y, assume they are comonotonic,
that is, that there exist random variable Z and continuous and increasing functions h and g
such that X = h(Z)and Y = g(Z). Then Q. [X + Y] =Q,[X]+ Q.[Y].

PROOF: Let Z, h, and g be as in the definition. Define fz(Z) = h(Z) + g(Z). This
function is clearly continuous and increasing. Therefore,

Q.[X + Y] =Q.[h(2)] = h(Q,[Z]) = h(Q.[Z]) + g(Q.[Z])
=Q,[M(Z)]+Q,;[¢(2)] =Q.[X]+Q.[Y],
by applying Lemma A.2 twice. Q.E.D.

A.2. Proofs of Section 3

PROOF OF THEOREM 3.4: This is essentially the same proof of Theorem 3.11, pre-
sented in detail below. Thus, we omit it. QE.D.

PROOF OF PROPOSITION 3.5: Let L be a bound for V", Using repeated times the re-
cursive property (16), we can write

Vi (x,2) = u(xy, x5, z1) + Q. [ Bu(x}, x4, o) + Q. [ Bu(xy, x}, z3) +
+Q.[Bulxt x5t z) + BV, Z )12y = 2,) 12y = 2]
<u(x}, x%, z) + Q. [Bu(x}, x5, z) + Q. [ BPu(x], xi, z3) +
+ QB u(xys1, X5 2a) + BL) Zy = 2] 1 21 = 2]
=V""(x,2) + B"L,

where in the last line we have used the property of quantiles that Q,[X + a] = a + Q,[X]
for @ € R; see Lemma A.2. Repeating the same argument with the lower bound —L, we
can write

V'(x,2) = B L <V"(x,2) <V""(x,2) + B""'L.
This concludes the proof. Q.E.D.
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PROOF OF THEOREM 3.9: Assume that plans # and 4’ are such that A, (-) = k,(-) for
ally <tand i/ P, h for all {2, ,, x. From (12), this means that
Vi (W, x, 27 = Vi (b, x, 271, V(x,2') e X x 2. (49)
Therefore,
I/l(h,y X, Zt) = u(xil/y xﬁ_lv Zt) + ﬂQT[V[+1 (h,y X, (Zt, Zl+1))|Zt = Zt]
Z u(xil/7 x?—;—l’ zt) + ﬂQT[I/H—l(h, xa (Zt’ zl+1))|Zt = Zt]
= u(-x?’ xfl+1, Zt) + BQT[I/[+] (h’ x, (Zl; Zt+1))|Zt = Zl]
=V,(h,x,2'),

where the first and last equalities come from the recursive equation (16), the first inequal-
ity comes from (49) and Lemma A.1(vi), while the equality in the third line comes from
the fact that the plans agree on all times up to 7, that is, x = x" and x/ | = h/(x", z") =

h,(x", z'y = x" . This establishes the claim. Q.E.D.

t+1°

PROOF OF THEOREM 3.11: We organize the proof in a series of lemmas.
LEMMA A.5: If v e C, the map (y, z) — Q,[v(y, w)|z] is continuous.

PROOF: Consider a sequence (y",z") — (y*,z*). Since v and f are continuous,
v(y", w) = v(y*, w) and

m"(a) =Pr({w:v(y", w) < a}lz") > Pr({w:v(y", w) < a}lz*) = m*(a). (50)

Let o" = infla € R : m"(a) > 7} = Q,[v(y", )|z"] and a* = infla e R: m*(a) > 7} =
Q. [v(y*, -)|z*]. We want to show that o" — o*.

In general, m"(-) and m*(-) may fail to be continuous, but they are right-continuous and
(weakly) increasing by Lemma A.1. Moreover, m* and m" are strictly increasing in the
range of v. More precisely, for each y, define R(y) = {a € R: 3w such that v(y, w) = «a}.
We claim that if « < &, a, & € R(y), then m*(«’) > m*(a), and similarly for m".*’

Indeed, assume that 3w, w’ such that v(y, w) = a and v(y, w') = «'. The set P = {aw +
(1 - a)w': acl0,1]} is contained in Z because this is convex. Thus, {v(y, p) : p € P} is
connected, that is, a nonempty interval. We conclude that, since v is continuous, the set
{we Z:a<v(y,w) <a'}is a nonempty and open set. (This implies, in particular, that
R(y) is an interval.) Since f(-|z) is strictly positive in Z, we conclude that

m*(a/) —m*(a) = Pr({we Z:a < v(y,w) <a'}|z) > 0,
which establishes the claim. By Lemma A.1(iv), we have
m*(@")>7 and m*(a*) > 1. (51)

We will show that a” — o* by first establishing liminf, &" > o* and then o* > limsup, «".

¥Note that m" and m* are the corresponding c.d.f. functions for v. Thus, proving that those functions are
strictly increasing in the range of v leads to continuity of the quantile with respect to 7, by (an adaptation of)
Lemma A.1(viii). But this is not what we need: we want continuity in (y, z). We prefer to offer here a direct
and detailed argument, although long.
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Suppose that @ = liminf, " < a*. This means that there exist € > 0 and for each j,
n; > jsuch that o’ < a+€ < o*. By the definition of a*, a + € < a* implies m*(a+€) < 7.
However, by (51), m"i (&) > 7, which implies m"i (e + €) > 7 and m*(a + €) > 7, by (50).
This contradiction establishes that liminf, a” > o*.

If @ =limsup, o > o*, there exist € > 0 and for each j, n; > j such that

ate>ai>a—€e>a—2e>a"+e. (52)

Recall that &” = inf{a@ € R : m"(«) > 7}. Therefore, & > a — € implies m" (& — €) < 7.
Thus, m"i (a* + €) < m"i (e — €) < 7. This implies that

m*(a*) <m*(a —2e) <m*(a—e) =limm"(a—e€) <1 <m* ().

Therefore, m* is constant between «* and a — 2e. This will be a contradiction if we show
that o*, @ — 2e € R(y*).

Since m*(a*) = Pr({w : v(y*, w) < a*}|z*) > 7> 0, {w : v(y*, w) < a*} # ¥ and there
exists some «a € R(y*) N (—o0, @*]. On the other hand, if {w : @ —2e < v(y*, w) < a+2€} =
@, then for sufficiently high j, {w: & —e < v(y", w) < @+ €} = @. In this case, m"i (@ —€) =
m"i(& + €) = 7". But this would imply either &/ <a — €, if 7 > 7, or &’ > & + €, if
7" < 7. In either case, we have a contradiction with &/ € (& — €, @+ €) as required in (52).
This contradiction shows that there exists &' € R(y*)N[a@ —2¢, @+ 2¢]. Since «, o’ € R(y*),
we have [a*, @ — 2€] C [a, &'] C R(y*). This concludes the proof. Q.E.D.

LEMMA A.6: Foreach v € C, the supremum in (26) is attained and M’ (v) € C. Moreover,
the optimal correspondence Y : X x Z = X defined by

Y(x,z)=arg max Q. [u(x,y,2) + Bv'(y, w)|z] (53)
yel'(x,z
is nonempty and upper semi-continuous.

PROOF: Let
gx,y,z,w)=u(x,y, z)+ Bv(y, w). (54)

By Lemma A.2, Q.[g(x, y, z, -)|z] = u(x, y, z) + BQ,[v(y, -)|z]. By Lemma A.5, Q,[g(x,
¥, z,+)|z] is continuous in (x, Yy, z). From Berge’s Maximum Theorem, the maximum
is attained, the value function M"(v) is continuous, and Y is nonempty and upper
semi-continuous. M"(v) is bounded because u and v, hence g, are bounded. Therefore,
M (v) €C. O.E.D.

We conclude the proof of Theorem 3.11 by showing that M" satisfies Blackwell’s suffi-
cient conditions for a contraction.

LEMMA A.7: M satisfies the following conditions:
(a) Forany v,v €C, v <v implies M"(v) < M"(v').
(b) Forany a>0and x € X, M(v+ a)(x) <M(v)(x) + Ba, with B € (0, 1).
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Then, |M(v) — M) < Bllv— V|, that is, M is a contraction with modulus B. Therefore,
M has a unique fixed point v" € C.

PROOF: To see (a), let v,v' € C, v < v and define g as in (54) and analogously
for g/, that is, g'(x,y, z,w) = u(x, y, z) + Bv'(y, w). It is clear that g < g’. Then, by
Lemma A.1(vi), Q,[g(-)|z] < Q,[g'(-)|z], which implies (a).

To veritfy (b), we use the monotonicity property (Lemma A.2):

Q,[u(x,y,2) + B(v(x, 2) + a)|z] = Q. [u(x, y, 2) + Bu(x, 2)|z] + Ba.
Thus, M"(v + a) = M"(v) + Ba, that is, (b) is satisfied with equality. QO.E.D.

PROOF OF THEOREM 3.12: We organize the proof in a series of lemmas. Let Assump-
tion 2 hold. It is convenient to introduce the following notation. Let C' C C be the set of
the continuous functions v: X x Z — R which are concave in x and nondecreasing in z.
It is easy to see that C’ is a closed subset of C. Let C” € C’ be the subset of strictly concave

functions. If we show that M"(C’) C C”, then the fixed point of M" will be strictly concave
in x. (See, for instance, Stokey, Lucas, and Prescott (1989, Corollary 1, p. 52).)

LEMMA A.8: Let Assumption 2 hold. M"(C') C C". Therefore, v™ € C". Moreover, the op-
timal correspondence Y : X x Z = X defined by (53) is single-valued. Therefore, we can
denote it by a function y*(x, z).

PROOF: Let a € (0,1), v € C’ and consider xy, x; € X, xg # x;. For i =0, 1, let y; €
I'(x;, z) attain the maximum, that is,

M (v)(x;, 2) = u(x;, yi, 2) + BQ[v(yi, w)lz] = Q;[g(xi, yi, 2, W)|z],
where g is defined by (54).
Let x, = axy+ (1 — @)x; and y, = ayy + (1 — @)y,. First, let us observe that
8(Xas Yar Z, W) = U(Xas Yo Z) + BU(Yar W)
> au(Xo, Yo, 2) + (1 — eulxy, y1, 2)
+ Bu(Ya, w)
> au(xg, Yo, 2) + (1 — a)u(xy, y1, z)
+ Blav(y, w) + (1 — a)v(y;, w)]
= ag(xo, Yo, z, w) + (1 — a)g(x1, 31, z, W),

where the first inequality comes from the strict concavity of u and the second, from the
concavity of v. That is, g is strictly quasiconcave, which establishes that Y (x, z) is single-
valued. Therefore,

Qf[g(xaa ya’ Z, w)lz] > Qr[ag(x[)a y07 Z, w) + (1 - a)g(xh yl, z, 'LU)|Z:|.

Note that the variables X = g(x¢, y, z, w) and Y = g(xy, y1, z, w) satisfy the assumption
of Proposition A.4 since v is non-decreasing in w (holding z fixed). Therefore,

Qr[g(xon Yon zZ, w)|Z] > OZQT[g(XO, yOa zZ, w)|Z] + (1 - a)QT[g(x17 yl: z, U))|Z]
=aM"(v)(xg, 2) + (1 — a@)M" (V) (x4, 2). (55)
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Therefore,
M () (Xa, 2) = Q:[8(Xas Yas 2, W) 2]
> aM"(v)(Xo, 2) + (1 — )M (v)(x1, 2).
This establishes strict concavity, concluding the proof. Q.E.D.

LEMMA A.9: Let Assumption 2 hold. If h : Z — R is weakly increasing and z < z', then
Q. [h(w)|z] < Q. [A(w)|Z'].

PROOF: From Assumption 2(ii), if #: Z — R is weakly increasing and z < 2/,

/[_1{u62:h(u)§w}]f(a|z) da < / [_1{an:h(a)§w}]f(a|Z,) da.
Z zZ

Thus,

/ f(alz)da 2/ f(alZ)da. (56)
{aeZ:h(a)<w}

{aeZ:h(a)<w}

If we define H(w|z) = Pr([h(W) < w]|Z = z), then (56) can be written as
H(w|z) > H(w|Z).

Observe that Q,[A(w)|z] = inf{la € R : H(a|z) > 7} and, whenever z < z/, H(w|z') <
H(w|z), for all w. Therefore, if z < z/, then

{aeR:H(alz)=7} D {aeR:H(a|Z)) > 7},
which implies that
Q.[h(w)|z] =infla e R: H(alz) > 7} <infla e R: H(a|Z') > 7} = Q,[h(w)|Z],
as we wanted to show. Q.E.D.

LEMMA A.10: Let Assumption 2 hold. If v € C is increasing in z, then M’ (v) is strictly
increasing in z.

PROOF: Let zy, z, € Z, with z; < z,. Fori =1, 2, let y; e I'(x, z;) realize the maximum,
that is,

M7 (0)(x1, 2) = u(x, y;, zi) + BQ:[v(y:, w)|z].
Since u is strictly increasing in z, we have
M (v)(x, 21) = u(x, 1, 1) + BQ:[v(y1, w)lz1] < u(x, y1, z2) + BQ:[v(y1, w)|z1].
From Lemma A.9, we have Q. [v(y;, w)|z;] < Q,[v(y1, w)|z;], which gives
M’ (v)(x, z1) < u(x, y1, 22) + BQ, [v(yi, w)|z].

From Assumption 2, I'(x, z) € I'(x, 2), that is, y; € I'(x, z;). Optimality thus implies
that

u(x, yi, z2) + BQ;[v(y, wlz] < u(x, y2, 22) + BQ:[v(ys, w)|z2] =M (V)(x, 25).

Therefore, M"(v)(x, z;) < M"(v)(x, z,), which shows strict increasingness in z. Q.E.D.
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We conclude the proof of Theorem 3.12 by showing differentiability of v, which follows
from an easy adaptation of Benveniste and Scheinkman’s (1979) argument. For complete-
ness and reader’s convenience, we reproduce it here. Given (x, z), let y*(x, z) e I'(x, z)
be unique maximum as established in Lemma A.8. Thus, for all (x, z), we have

v(x, 2) = u(x, y*(x, 2), 2) + BQ.[v(y"(x, 2), w)| z].
Fix x, in the interior of X and define
w(x, z) = u(x, y*(xo, 2), z) + BQ.[v(y*(x0, 2), w)|z].
From the optimality, for a neighborhood of x,, we have w(x, z) < v(x, z), with equality at
X = x4, which implies w(x, z) — w(x,, z) < v(x, z) — v(xo, z). Note that w is concave and
differentiable in x because u is. Thus, any subgradient p of v at x, must satisfy
P (x —x0) = v(x, z) — v(xg, 2) = W(x, 2) — W(X0, 2).

Thus, p is also a subgradient of w. But since w is differentiable, p is unique. Therefore,
v is a concave function with a unique subgradient. Therefore, it is differentiable in x (cf.
Rockafellar (1970, Theorem 25.1, p. 242)) and its derivative with respect to x is the same
as that of w, that is,

v’ Jw u
xX,2)=—(x,2)=—(x,y"(x, 2), ),
ax,-( ) &xi( ) &xi( yi(x,2), z)

as we wanted to show. QE.D.

PROOF OF LEMMA 3.14: By Stokey, Lucas, and Prescott (1989, Theorem 7.6), I" has
a measurable selection. Therefore, the argument in Stokey, Lucas, and Prescott (1989,
Lemma 9.1) establishes the result. Q.E.D.

We need the following notation in the next proof. Let T € NU {oo} and S : Z7 — Z7-!
be the shift operator, that is, given z = (z1, 2, ..., zr) € 21, S(z2) = (23, ..., z7) € ZT71.
Abusing notation, let S : H — H also denote the shift operator for plans, that is, given
h e H, h* = S(h) € H is defined as follows: for each given z* € Z*, hi(x, S(z"!)) =
hii(x, 2. Let S, : H — H be the composition of S with itself ¢ times.

PROOF OF LEMMA 3.15: Let ¢ > 2 (otherwise there is nothing to prove). Since
H,(x,z) C Hi(x,z) = H(x, z) by definition, we have v/(x, z) < v(x, z). Suppose, for
an absurd, that there exists 4 € H(x, z) such that

Vi(h, x,z) > v/(x, z). (57)

Let 4 and (&, 2') be such that S,_;(h) = h, x(%, 2') = x and %, = z. Then, V;(Z, ¥, 2) =
Vi(h, x, z). Since vi(x, z) > Vi(Z, X, 2'), this establishes a contradiction with (57). Q.E.D.

PROOF OF LEMMA 3.16: If v is bounded and satisfies (28), then it is the unique fixed
point of the contraction M. Thus, the proof of Theorem 3.11 establishes, via the maxi-
mum theorem, the claims. O.E.D.
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PROOF OF PROPOSITION 3.17: Assume that v satisfies (28). It is sufficient to show that
(i) v(x,z) = Vi(h,x,z) for any h € H(x,z) and (x,z) € X x Z; and (ii) v(x, z) =
Vi(h?,x,z).Let h € H(x, z). We have

v(x,z) = sup u(x},y,z1) + BQ;[v(y, 2)|z]

yEI'(xi’,zl)
> u(xt, x4, z)) + BQ,[v(x%, z)1z1]

zu(xi’,xé’,zl)JrBQf[ sup {u(XQ’,y,Zz)+BQT[v(y,23)|Zz]}|zl]

yel (x4,25)

= u(xily xga Zl) + QT[Bu(xg7 xg, 22) + Qf[ﬁzv(xgla Z3)|22:||Zl],

where the two inequalities come from the definition of sup, and the equalities from (28)
and Corollary A.3. Repeating the same arguments, we obtain

v(x,2) > u(x}, x5, z1) + Q[ Bu(xh, x4, ) + Q, [ Bu(xy, x}, z3) + - -
+Q:[B"u(Xy 15 Xi0r 2) + B 0(x,, Z) ]| 20 = 2] 1 2y = 2]

Repeating the arguments in the proof of Proposition 3.5, we can conclude that the limit of
the right-hand side when n — oo is V"(x, z) = V;(h, x, z). Thus, we have established that
v(x, z) > Vi(h, x, z). Since h was arbitrary, then v(x, z) > v*(x, z). On the other hand,
for h¥ the inequalities above hold with equality and we obtain v(x, z) = v*(x, z). Q.E.D.

PROOF OF THEOREM 3.18: Let g(x,y,z,w) = u(x,y,z) + BQ,[v(y,w)|z] and
y*(x, z) be an interior solution of the problem (28). Observe that v” is increasing in w,
differentiable in its first variable, and for 0 < x; — x; < €, for some small € > 0,

/

Y " * du
v’ x’,,xfl-,Z -7 Xi, X_;j,Z)= a, X_j, Z da =
( ! ) ( ) /x ox ( ) /x ax

i i

(a, x_;, 2)da

is increasing in z because - is. Therefore, the assumptions of Proposition 3.19 are satis-

fied and we conclude that f;f_* [vVi(x,2)]=Q. ["” (x, 2)]. Since u is differentiable in y, so
is g. Since y*(x, z) is interior, the following first- order condition holds:

J d v’

&—‘ygl_(x, yi(x, 2), 2, Q.[w|z]) = a—;(x, yi(x,2),2)+ BQT[&; (r*(x, 2), w)H =0.
Now we apply Theorem 3.12 and its expression: —(x z) =24 (x, v*(x, z), z), to conclude
that

u
(y—y(x, y'(x,2),z) + BQ, [ (' (x, 2), y* (" (x, 2), w), )H =0. (58)
Now, we have just to put the notation of a sequence. For this, let # = (x,) denote an
optimal path beginning at (x,, zo); (58) can be rewritten, substituting x for x”, y*(x, z) for
XL vy (v (x, 2), w) for x",, z for z,, and w for z,,4, as

Ju
&y (xtaxH_l;Zt) +BQ |: ( t+1’ X?+2, Zl+1)

z, | =0, 59
} (59)

which we wanted to establish. O.E.D.
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PROOF OF PROPOSITION 3.19: Fix a sufficiently small 6 > 0 and x = (x;, x_;), with the
usual meaning.*’ Define X = d(z) = h(x; + 6,x_;,z) — h(x;,x_;,z) and Y = g(z) =
h(x;,x_;, z). Since h and d(z) = h(x; + 6,x_;, z) — h(x;, x_;, z) are increasing in z by
assumption, the random variables X and Y satisfy the assumptions of Proposition A.4,
which allows us to conclude that

QT[h(xi + 89 X_i» Z)] = Q’T[X + Y] = Q’T[X] + Q’T[Y]
= Qr[h(xi + 87 X_i, Z) - h(xh X_i, Z)] + QT[h(xi7 X_i» Z)]'

Therefore, for all sufficiently small 6 > 0,

Q,[A(x;+8,x_i,2)] — Q[ h(xi, x_;, 2)] _0 |:h(xi +6,x_;,z)— h(x;, x_;, Z)]
) ! ) ’

h(xi+8,x_j,2)=h(x;,x_j,2)

Since 6 — 3 is continuous, Lemma A.5 implies that
T h i 87 —is - T h is V—i» . i s A—is - is M—is
limQ [A(x;+8,x_i,2)] — Q. [h(xi, x_;, 2)] :thT[h(x +8,x4,2) — h(x;, x z)}
510 ) 810 o
i ) —is - is V—i»
=Q,|:lim h(x;+6,x_;,2) — h(x;, x z)}
540 0

oh
= Qf[axi (x, Z)]

We can adapt the above arguments for 6 > 0 and X = d(z) = h(x;, x_;, z) — h(x; —
8,x_;,z)and Y = g(z) = h(x;, x_;, z) to conclude that

T h ir M—i» - T h i_aa —i» . is A—is - i Uy A—jy
th[ (xi,x_, 2)] — Q;[A(x X, 2)] =thT|:h(x X 2)—h(x;—8,x z):|
510 S 810 0

_o. [hm h(xi,x_i,z) = h(x; — 8, x_;, 2)}
510 o

= Qr[jh (x7 Z)j|'

1

By changing & > 0 above by 6 = —& < 0, we obtain

QT h x,——l—g,x,,-,z _QT h Xi, X_i, Z dh

lim [ ( )] [ ( )] =Q,[—(x,z)].
510 ) ox;

This shows that the right and left derivative of x; — Q.[A(x;, x_;, z)] exist and are equal.

Therefore, x; — Q,[h(x;, x_;, z)] is differentiable and its derivative is QT[j—f (x,2)],aswe
wanted to show. Q.E.D.

#0<Sufficiently small” here means that & > 0 is taken so that d(z) = h(x; + 8, x_;, z) — h(x;, x_;, z) is in-
creasing, as required by the assumption of the proposition. This “smallness” condition will be left implicit
below.
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A.3. Proofs of Section 4

PROOF OF LEMMA 4.1: Assumption 1(i)-(iii) and (v) are immediate. Since Z and X
are bounded, and U and z — z + p(z) are C', u is C' and bounded. Thus, Assumption 1
is satisfied. Similarly, Assumptions 2 are easily seen to be satisfied. It remains to verify
the assumption of Theorem 3.18, namely, that j—;‘i(xfl, x" ., z,) is strictly increasing in z,,

which happens if and only if log 2 (x/, x" , z,) is strictly increasing in z,. Since

J
log = (x,,2) = —ylog[z - x + p(2) - (x )] + log(z + p(2),

and x" = fo =1, we need to verify only that —y[log(z)]’ + [log(z 4+ p(z))]’ > 0. This is
equivalent to y < z[log(z + p(z))], which is contained in Assumption 3(iv). Q.E.D.
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