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a b s t r a c t

This paper considers a very general class of single or multi-unit auctions of indivisible
objects. The model allows for interdependent values, multidiminensional types and any
attitude towards risk. Assuming only optimal behavior, we prove that each bid is chosen in
order to equalize the marginal benefit to the marginal cost of bidding. This generalizes many
existing results in the literature. We use this characterization to obtain sufficient conditions
for truthful bidding, monotonic best reply strategies and identification results for multi-unit
auctions.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Most results in auction theory rely on the assumption that bidders play equilibrium strategies. This assumption is fairly
reasonable in most cases, but some empirical and experimental findings suggest that it is not always satisfied.1 On the other
hand, it seems that very little can be said out of equilibrium behavior. In this paper we show that a very weak assumption
about bidders’ behavior – that each bidder plays a best reply to the strategies that he believes the others are playing – can
still provide useful conclusions.2

Our model encompasses a very general class of sealed-bid, single and multi-units auctions. We allow for interdependent
values, asymmetric valuations, any attitude towards risk, non-monotonic value functions, non-separable transfers, dependent
signals of any dimension, unitary or multiple unit demands auctions with just sellers, buyers or both. Also, no common prior
is required. Under these general conditions we prove what we call the “basic principle of bidding”. That is “a rational bidder
bids in order to equalize the marginal benefit of bidding (the utility that he obtains in case of winning) to the marginal cost
of bidding”.

� This is a extended and improved version of the second chapter of de Castro (2004).
∗ Corresponding author. Tel.: +57 2 3394949; fax: +57 2 3324492.

E-mail addresses: decastro.luciano@gmail.com (L.I. de Castro), ariascos@uniandes.edu.co (A. Riascos).
1 See Kagel (1995) for findings in the experimental literature, and Laffont (1997) for a review of empirical works.
2 Thus, our behavioral assumption is even weaker than that of rationalizable strategies, as studied by Battigalli and Siniscalchi (2003).
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In a sense, it is obvious that in standard smooth optimization problems, at the optimum the marginal benefit (derivative
of the objective function) equals to the marginal cost (shadow price) of the constraints. Nevertheless, this is not exactly the
case for auctions, where the marginal cost does not come from a constraint. This is also different from the classic firm’s
problem, where revenue and costs are separable and the first order condition naturally gives that marginal revenue should
equal the marginal cost. In contrast, the basic principle of bidding holds without assuming separability of revenues and costs.
In auctions, the basic trade-off that a bidder faces is that a higher bid, although it increases the probability of winning, it may
also decrease the payoff in case of winning. Using Leibniz rule to differentiate an integral that depends on the variable in the
region of integration and in the integrand, we obtain two terms. These two terms can be interpreted as marginal benefit and
marginal cost.

Although the proof is reminiscent of Leibniz rule in differential calculus, this result is not elementary because we need the
theory of differentiation of measures. When we introduce additional assumptions, i.e., continuously differentiability of pay-
offs at the optimum bid, we provide first order conditions that generalize those obtained by Milgrom and Weber (1982) for
first- and second-price auctions, Krishna and Morgan (1997) for the all-pay auction and war of attrition, and Williams (1991)
for buyers’-bids double auctions. Under risk neutrality, symmetry and monotonicity of the utility function, the provided char-
acterization reduces to the ones in those papers. In addition, in a indivisible good framework, with or without interdependent
values, we provide first order conditions for the multi-unit discriminatory, uniform and Vickrey auction. To the extent of our
knowledge, the indivisible goods, interdependent values model caracterization for the discriminatory auction is new.

The payoff characterization lemma, which is the main result of this paper, and which is valid in the most general setting,
opens the way to a general approach to equilibrium existence for general auction models like in Araujo and de Castro
(2008). It can also provide insights for empirical and experimental studies, since every bid (even the initial or the apparently
inconsistent ones in a repeated game) bears valuable information about players’ beliefs. The first order conditions is a first
step towards characterizing rational behavior in general auctions. Also, as the recent literature on econometric identification
of auction models has pointed out, characterizing best reply bidding strategies allows for identification in many standard
auction formats.3 Following this approach, our result allows for general econometric identification of multidimensional
auction models. We present some of these results in Section 4.3. We also use our results to give sufficient conditions for
truthful bidding in multi-unit auctions. This gives an immediate proof that Vickrey auction is truth-telling, and that only the
bid for the first unit in uniform auctions is truthful.

The paper is organized as follows. Section 2 presents the model and notation. Section 3 contains the main results and some
examples of direct applications. Some applications are provided in Section 4. First, we give sufficient conditions for truthful
bidding and provide examples for when it holds and when it does not. We also prove a monotonic-best reply result that
generalizes for multiunits auctions a result of Araujo and de Castro (2008), which is the key result for their proof of equilibrium
existence in single-object auctions. Yet in Section 4 we report results on indentification in multiunit auctions, some of which
are new, to the best of our knowledge. Section 5 is a brief conclusion. Appendix A contains some of the more technical proofs.

2. The model

Our model is inspired in auction games, although it can encompass a general class of discontinuous games. For conve-
nience, we will use the terminology of auction theory such as “bidders”, “bidding functions” and “bids”, for players, strategies
and actions, respectively.

2.1. Players and information

There are N strategic bidders. We allow for the existence of an uninformed and non-strategic player, named 0. This
is the seller in traditional auctions. For double auctions, there is no such player. We denote by N = {0, 1, . . . , N} the
set of all players (strategic and non-strategic). Player i ∈N receives a signal (i.e., private information), ti ∈ Ti where Ti

denotes player i’s information set. We denote by t = (t1, t2, . . . , tN) = (ti, t−i) the vector of all players’ information, where
t−i = (t1, . . . , ti−1, ti+1, . . . , tN), as usual. Let �i be a �-field of subsets of Ti and define T ≡

∏
i ∈NTi and the product �-field

over T, � =
∏

i ∈N�i. Players beliefs are functions �i : Ti → �(T−i, �−i), where T−i ≡ ∏
j /= iTj , �−i = ∏

i /= j�i and �(T−i, �−i) is
the set of probability distribution over the measurable space (T−i, �−i). If g is a function of t−i, we denote the expectation of
g with respect to �i(ti), by E[g|ti]. Also to ease notation we will write �(·|ti) instead of �i(ti).

Notice that we do not assume that players beliefs need to represent conditional beliefs derived from a common prior over
T. Individual signals may be dependent and of arbitrary dimension.

2.2. Objects and bidding

There are K indivisible objects. Each player i ∈N comes to the auction with ei ∈ {0, 1, 2, . . .} units of the same object, and∑N
i=0ei = K . After receiving its signal, a strategic player submits a sealed proposal, that is, a bid (or offer) that is a vector of

3 See Athey and Haile (2007) for a survey on the main issues regarding the econometric identification of auction models.
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Fig. 1. Bid (bi) and supply (si) curves for bidder i. In the situation displayed, bidder i receives three units, because bi,3 > si,3 but bi,4 < si,4.

real numbers, bi ∈ B ⊆ RK where B denotes the set of valid bids, that is, B = {b ∈RK : bk ≥ bk+1 for k = 1, . . . , K − 1} ∩ [b, b̄],
bi,k is the maximum value that bidder i is willing to pay for the k th unit, given that he is receiving k − 1 units; and [b, b̄]
denotes a K dimensional rectangle that bounds the set of all bids. Since bids are non-increasing we are implicitly assuming
that there are no complementarity among objects. Bids are in units of account (i.e., dollars). The non-strategic player 0 also
places a bid b0 ∈ B, meaning that there is a reserve price for each unit.4 For instance, in a one-object auction (K = 1) where
all players are buyers, if maxj=1,...,Nbj,1 < b0,1, this means that none of the bidders are willing to pay the reserve price. The
difference is that b0 is known to everyone at the time the auction takes place, while bj , j /= 0, is not known to bidder i /= j,
i ∈N.5 We denote by b the vector of all players’ bids, b ∈R(N+1)K .

2.3. Allocation and payoffs

The “auction house” computes the bids and determines how many units each player receives. If player i wins a k th
unit, his payoff is increased by ui,k(t, b), where ui,k : T × R(N+1)K → R.6 Thus, if player i ∈N ends the auction with exactly
mi ∈ {0, 1, . . . , K} units, his payoff is

∑mi
k=0ui,k(t, b). The utility functions ui,k(t, b) incorporate in their definition the number

of units ei that bidder i has, as we explain in the examples below. If k ≤ ei, ui,k(t, b) stands for the utility of keeping the k th
object and if k > ei, ui,k(t, b) stands for the utility of buying the k th object. We will explain below the allocation rule, which
will complete the definition of the payoff for each bid profile. In the examples we shall restrict to separable transfers so, for
later reference, for each player i and unit k, let vi,k : T → R be a function such that vi,k(t) represents the (marginal) value, in
units of account, of the k th unit for player i when the vector of signals is t ∈ T .

If mi < ei, the player has sold ei − mi units in the auction and if mi > ei, the player has bought mi − ei units in the auction.
No negotiation was made if mi = ei.

Given b−i, let si = (si,1, si,2, . . . , si,K ), with si,1 ≤ si,2 ≤ · · · ≤ si,K , denote the (inverse) residual supply curve facing bidder i.
That is, si,K is the highest of the bids by players j /= i, si,K−1 is the second highest and so on. Thus, for getting (for sure) at least
one unit, bidder i’s highest bid must be above si,1, that is, bi,1 > si,1. For bidder i winning at least two units, it is necessary
bi,2 > si,2 and so on. Fig. 1 illustrates this.

In order to decide who wins an object, we will assume that the auction house uses an allocation (or tie-breaking) rule.

Definition 1. An allocation rule is any function a : R(N+1)K → [0, 1](N+1)K such that:

1. If bi,k < si,k then ai,k(b) = 0.
2. If bi,k > si,k then ai,k(b) = 1.
3. The allocation rule is non-increasing in k, that is, for all k′ ≤ k, ai,k′ (b) ≥ ai,k(b).7

4.
∑N

i=0

∑K
k=1ai,k(b) = K .

4 If the model does not specify a reserve price it is usual to assume b0 = 0.
5 Unknown reserve prices can be modeled as the bid of a strategic bidder.
6 We consider the dependence on b instead of bi because we want to include in our results auctions where the payoff depends on bids of the opponents,

such as the second-price auction, for instance. Also, this allows the study of “exotic” auctions, i.e., auctions where the payment is an arbitrary function of
all bids.

7 If there is no tie, this condition follows from 1 and 2.
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The interpretation is the following. If ai,k(b) = 1 then player i wins at least k objects. If ai,k(b) = 0 then player i wins at
most k − 1 objects. Formally, the first condition says that if player i’s k th bid is lower than the K − k + 1 highest competing
bid he will not be awarded the k th object. The second condition says that if player i bids higher for unit k than the K − k + 1
highest competing bids then he will win at least k objects. The third says that if he wins at least k objects then he must also
win at least 1, . . . , k − 1 objects. The fourth says that at most K units are allocated among the N agents.

Observe that in the definition of allocation rules, there is freedom to define the rule only when bi,k = si,k, provided the
other conditions are satisfied. Thus, it is sufficient to define the rule for ties.

This setting is very general and applies to a broad class of discontinuous games, as we exemplify below.8

2.3.1. Allocation rules

Example 1 (Nominal allocation rule). Let us suppose that the bidders are numbered following a given order (say, the lexico-
graphic order for their names). We can define that, in the case of a tie, the bidder with the least number, among those that
are tying, gets the object. It is easy to see that this rule satisfies all conditions in Definition 1.

Another example of allocation rule is the standard one, that splits randomly the objects.

Example 2 (Standard allocation rule). In the case of a tie, the objects involved in the tie are randomly divided among the
tying bidders. Formally: if bi,k = si,k then ai,k(b) = p/q where p is the number of the objects to be allocated in the tie, that is,
p = K − �{(j, k̃) : such that bj,k̃ > bi,k} and q is the number of tying bids, that is, q = �{(j, k̃) : such that bj,k̃ = bi,k}.

2.3.2. Auctions

Example 3 (Single-unit auctions). ui,1(t, b) = Ui(vi,1(t) − bi,1) and ui,0(t, b) = 0 corresponds to a first-price auction with risk
aversion or risk loving.9 If Ui(x) = x, we have risk neutrality. If ui,1(t, b) = vi,1(t) and ui,0(t, b) = −bi,1 we have the all-pay
auction. If ui,1(t, b) = vi,1(t) − si,1 and ui,0(t, b) = 0 we have the second-price auction. If ui,1(t, b) = vi,1(t) − si,2 and ui,0(t, b) =
0 we have the third-price auction. If ui,1(t, b) = vi,1(t) + bi,1 − si,1 and ui,0(t, b) = −bi,1 we have the war of attrition. We can
have also combinations of these games. For example, ui,1(t, b) = vi,1(t) − ˛bi,1 − (1 − ˛)si,1 and ui,0(t, b) = 0, with ˛ ∈ (0, 1),
gives a combination of the first- and second-price auctions.

Example 4 (Multi-unit auction with unitary demand). It is also useful to consider K-unit auctions with unitary demand,
among N buyers, 1 < K < N. In this case, bj,k < b0,1, for all j = 1, . . . , N and k = 2, . . . , K . Then, a pay-your-bid auction is
given by ui,1(t, b) = vi,1(t) − bi,1 and ui,0(t, b) = 0. If it is a uniform price with the price determined by the highest looser’s
bid, ui,1(t, b) = vi,1(t) − si,K and ui,0(t, b) = 0. If it is a uniform price with the price determined by the lowest winner’s bid,
ui,0(t, b) = 0, ui(t, b) = vi,1(t) − max{bi,1, si,K }.
Example 5 (Multi-unit auctions with multi-unit demand). ui,1(t, b) = vi,1(t) − bi,1, . . ., ui,K (t, b) = vi,K (t) − bi,K and ui,0(t, b) =
0 corresponds to a multiple unit auction with discriminatory price. If ui,1(t, b) = vi,1(t) − p(b), . . ., ui,K (t, b) = vi,K (t) − p(b)
and ui,0(t, b) = 0 it correspond to a uniform multiple unit auction. There are two different uniform price auctions: p(b) can
be the lowest winner’s bid (as in some actual treasury bills auctions) or p(b) can be the highest looser’s bid (as described
by Krishna, 2002). If ui,1(t, b) = vi,1(t) − si,1, . . . , ui,k(t, b) = vi,k(t) − si,k, ui,K (t, b) = vi,K (t) − si,K and ui,0(t, b) = 0 we have
Vickrey auction.

2.4. Strategies and order statistics

The strategy of a bidder i ∈N is a bidding function bi : Ti → B. We will use bold type for bidding functions. Notice that
we do not specify a strategy for the non-strategic player, i = 0. We will restrict to integrable strategies, that is, we assume
that the vector of strategies is b = (bi)i ∈N ∈

∏
i ∈NL

1(Ti, B). For a vector of strategies b = (bi)i ∈N, let b−i be the vector of
strategies of all strategic players except player i, we denote by si, for a fixed b−i, the function si : T−i → R

KN that orders the
NK vector b−i(t−i) from the highest to the lowest bid. Given b−i and j, 1 ≤ j ≤ KN, define the distribution function, Fsi,j

(·|ti) on
R, by Fsi,j

(ˇ|ti) ≡ �({t−i ∈ T−i : si,j(t−i) < ˇ}|ti) and let fsi,j
(b|ti) be its Radon–Nykodim derivative with respect to the Lebesgue

measure. We denote by F⊥
si,j

(b|ti) the singular part of Fsi,j
(b|ti).

In the examples, sometimes we will restrict to monotone strategies. In such cases we will implicitly assume that Ti = R
and use the following notation. Given t ∈ T , we define t(−i) as t(−i) ≡ maxj /= itj .

2.5. Expected payoff

In order to simplify notation below, we will write (·) in the place of (ti, t−i, bi, b−i(t−i)); (ˇ, ·) in the place of
(ti, t−i, (ˇ, bi,−j), b−i(t−i)); and (◦) in the place of (bi, b−i(t−i)). Thus, if the bid b0 and the profile of bidding functions b−i

8 Obviously, the utility functions are specified only for strategic bidders, that is, for i /= 0.
9 If we put ui,1(t, b) = Ui(vi,1(t) − bi,1) we can have any attitude towards risk.
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are fixed, the expected payoff of bidder i of type ti, when bidding bi, is:

˘i(ti, bi, b−i) ≡
∫

T−i

ui,0(·)�(dt−i|ti) +
K∑

k=1

∫
T−i

ai,k(◦)ui,k(·)�(dt−i|ti),

which is equivalent to

˘i(ti, bi, b−i) =
∫

T−i

ui,0(·)�(dt−i|ti) +
K∑

k=1

∫
T−i

ui,k(·)1[bi,k>si,k]�(dt−i|ti) +
K∑

k=1

∫
T−i

ai,k(◦)ui,k(·)1[bi,k=si,k]�(dt−i|ti). (1)

There are two important ways in which the third term in the above expression may be omitted. If for all k = 1, . . . , K ,
the distribution Fsi,k

(•|ti) has no atoms and therefore, the tie-breaking rule (i.e., allocation rule a) is not important and, if the
auctioneer keeps the objects in case of ties. That is, when ai,k(◦) = 0 whenever bi,k = si,k.

3. Bidding behavior

Our first result is a characterization of the payoff through its derivative with respect to the bid given by an integral
expression (i.e., a kind of first fundamental theorem of calculus). For this, we will need the following assumption.

Condition 1. ui,k : T × RK(N+1) → R, k = 0, 1, . . . , K are absolutely continuous on bi,k and ∂bi,k
ui,k is essentially bounded.10

Our main result is the following lemma.

Lemma 1 (Payoff characterization). Assume Condition 1. Fix a bi in the interior of B and profile of bidding functions b−i.11Define

bi,K+1 = bK and for j = 1 . . . , K , let bj
i

denote the vector obtained from bi by substituting the coordinate bi,j by bi,j+1. Then for all
j = 1 . . . , K the payoff of bidder i when bidding bi can be expressed as:

˘i(ti, bi, b−i) = ˘i(ti, bj
i
, b−i) +

∫
[bi,j+1,bi,j)

∂bi,j
˘i(ti, (ˇ, bi,−j), b−i) dˇ

+
∫

[bi,j+1,bi,j)

E[ui,j(·)|ti, si,k = ˇ]F⊥
si,j

(dˇ|ti) +
K∑

k=1

E[ai,k(◦)ui,k(·)1[bi,k=si,k]|ti]

where E[·|ti] is the expectation with respect to the measure �(·|ti), and for almost all bi,j:

∂bi,j
˘i(ti, (ˇ, bi,−j), b−i) = E[∂bi,j

ui,0(ˇ, ·)|ti] +
∑
k /= j

E[∂bi,j
ui,k(ˇ, ·)1[bi,k>si,k]|ti] + E[∂bi,j

ui,j(ˇ, ·)1[ˇ>si,j]|ti]

+ E[ui,j(·)|ti, si,j = ˇ]fsi,j
(ˇ|ti). (2)

Proof. See Appendix A. �

The most important part of Lemma 1 is Eq. (2). When there is no tie with positive probability at bi (i.e., Fsi,k
(−|ti) has no

atoms), ∂bi,j
˘i(ti, bi, b−i) is, for almost all bi,j , the partial derivative of ˘i(ti, bi, b−i) (see Section 5). It is useful to observe that

in Eq. (2), the first three terms on the right capture only the impact of changing bid bi,j = ˇ in the payoff (payment) of each
unit, while the last line captures the impact of such a change in the probability of winning the unit j. Note also the difference
in the events in the second and the third line: [bi,k > si,k] and [ˇ > si,j].

The following corollary characterizes best response bids in an intuitive way. It says that under Condition 1, the optimum
bid is such that the marginal cost of bidding is equal to the marginal utility from bidding. More formally, see the following
corollary.

Corollary 1 (Basic principle of bidding). Assume Condition 1. If ˘i(·) is differentiable in bi at a bid profile which is optimal and
in the interior of B, that is, at bi ∈ argmaxb ∈ B˘i(ti, b, b−i) ∩ intB, and there is no tie with positive probability at bi (i.e., Fsi,k

(·|ti)

10 Absolute continuity with respect to bi,k implies that ∂bi,k
ui,k exists almost everywhere (with respect to Lebesgue measure) and

ui,k(bi,j, ·) − ui,k(bi,j+1, ·) =
∫

[bi,j+1,bi,j)

∂bi,j
ui,0(ˇ, ·) dˇ.

Essentially boundedness is used to invoke Lebesgue dominated convergence theorem.
11 This interiority assumption does not allow for flat bids.
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has no atoms), then for all j,

E[ui,j(·)|ti, si,j = bi,j]fsi,j
(bi,j|ti) = E[−∂bi,j

ui,0(bi,j, ·)|ti] +
K∑

k=1

E[−∂bi,j
ui,k(bi,j, ·)1[bi,k>si,k]|ti]. (3)

Proof. If Fsi,k
(·|ti) has no atoms then F⊥

si,k
(·|ti) = 0 almost everywhere. Therefore, by the payoff characterization lemma:

˘i(ti, bi, b−i) = ˘i(ti, bj
i
, b−i) +

∫
[bi,j−1,bi,j)

∂bi,j
˘i(ti, (ˇ, bi,−j), b−i) dˇ.

If ˘i(ti, bi, b−i) is differentiable at bi ∈ argmaxb ∈ B˘i(ti, b, b−i) and is in the interior of B then

∂bi,j
˘i(ti, (bi,j, bi,−j), b−i) = 0.

This concludes the proof. �

Observe that E[ui,j(·)|ti, si,j = bi,j]fsi,j
(bi,j|ti) represents the marginal benefit of raising the bid in unit j, that is, the expected

utility conditional to the event of a tie exactly for that unit. On the other hand, the terms in the second line of (3) represent
the marginal cost of changing bid bi,j , since the change of bi,j may affect the expected payment for all units one is winning.
Note that this interpretation does not require separability in the monetary transfer (risk neutrality). This interpretation is
useful for explaining bidding behavior in an intuitive way: the players bid to equalize the marginal benefit to the marginal
cost of bidding.

The following corrollary will be used later to prove a monotone best-reply result.12

Corollary 2 (Payoff characterization as a line integral). Assume Condition 1 and suppose for all i and k, ∂bi,k
˘i exists and is

continuous in bi. Fix b0, a profile of bidding functions b−i, two bids b1
i

and b2
i

in the interior of B, and a smooth curve ˛ : [0, 1] → B

such that ˛(0) = b0
i

and ˛(1) = b1
i

then, for all j = 1, . . . , K the payoff of bidder i when bidding bi can be expressed as:

˘i(ti, b1
i , b−i) = ˘i(ti, b0

i , b−i) +
∫

[0,1]

∇bi
˘i(ti, ˛(s), b−i) · ˛′(s) ds,

where ∇bi
˘i(ti, ˛(s), b−i) = (∂bi,j

˘i(ti, ˛(s), b−i))j=1,...,K
.

Since we assume the existence and continuity of interim payoffs, this result follows immediately from the second fun-
damental theorem of calculus (see Apostol, 1967). The main point is that, under these conditions, we can explicitly write
the derivative of interim expected payoffs. Theorem 1 of Krishna and Maenner (2001) shows that convexity or regular Lips-
chitzian condition are sufficient to guarantee the existence of a subgradient and, therefore, a representation of payoffs’ as a
line inegral. However, they do not calculate explicitly the subgradient.

3.1. Examples

The examples below show that Corollary 1 is a generalization of the necessary first-order conditions for the first and
second-price auctions presented in Milgrom and Weber (1982), for the war of attrition and all-pay auctions presented in
Krishna and Morgan (1997). The example on double auctions shows that the Basic Principle of Bidding is concise. Such an
example is the application of Corollary 1 for double auctions and it presents a comparison with the equivalent expression
obtained by Williams (1991).

Example 6 (First price—single-object auction). When we restrict ourselves to the case of the first-price single object auction
with risk neutrality: K = 1, ui,0 = 0 and ui,1(t, b) = vi,1(t) − bi, then ∂bi

ui,1(t, b) = −1. The condition of Corollary 1 becomes:

bi = E[vi,1|ti, si,1 = bi] −
Fsi,1 (bi|ti)

fsi,1 (bi|ti)
. (4)

This (necessary) first-order condition provides a useful way to determine best-reply bids. Note that this expression admits
non-monotonic bidding functions, contrary to Milgrom and Weber’s model. It also encompasses asymmetries in valuations
and distribution of types. Assuming affiliation and monotonic utilities, Milgrom and Weber (1982) can restrict themselves
to the space of monotone symmetric bidding functions (i.e., bi = b, for all i ∈ N). Thus,

si,1(b−i(t−i)) = x ⇔ maxj /= ib(tj) = x ⇔ maxj /= itj = (b)−1(x),

12 This is a kind of second fundamental theorem of calculus for line integrals (see Apostol, 1967). By assuming the existence and continuity of interim
payoffs, our result follows immediately from the second fundamental theorem of calculus. Our point is that, under these conditions, we can explicitly write
the derivative of interim expected payoffs. Convexity or regular Lipschitzian condition in Theorem 1 of Krishna and Maenner guarantee the existence of a
subgradient. We, however, assume the existence of such a derivative.
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where in the last equation (b)−1 stands for the inverse (generalized) of b. This equation says that conditioning on si,1 = bi is the
same to conditioning on maxj /= itj = ti. Recall that t(−i) ≡ maxj /= itj . Then fsi,1 (s|ti) = (ft(−i) (s|ti)/b′(s)) and Fs−i,1 (s|ti) = Ft(−i) (s|ti).
With this, (4) becomes

db
dt

(ti) = (E[vi,1|ti, t(−i) = ti] − b(ti))
ft−i

(ti|ti)

Ft−i
(ti|ti)

, (5)

whose solution is shown to be an equilibrium under affiliation.

Example 7 (Second price—single-object auction). In the second price single object auction, Milgrom and Weber’s model is
equivalent to K = 1, ui,1(t, b) = vi,1(t) − si,1 and ui,0 = 0. Then, ∂bi

ui,1(t, b) = 0 and the condition in Corollary 1 reduces to
E[vi,1 − bi,1|ti, si,1 = bi,1]fsi,1 (bi,1|ti) = 0 which can be simplified to

bi = E[vi,1|ti, si,1 = bi,1]. (6)

Note that the marginal cost of bidding is zero for the second price auction. Again, with monotonicity and symmetry
assumptions, Milgrom and Weber’s expression for the equilibrium bid function can be obtained:

b(ti) = E[vi,1|ti, t(−i) = ti] ≡ v̄(ti, ti).

Example 8 (All pay—single-object auction). Krishna and Morgan (1997) extend the method of Milgrom and Weber (1982) to
the cases of war of attrition and all-pay auctions. In the all-pay auction, their model is equivalent to ui,1(t, b) = vi,1(t) − si,1
and ui,0(t, b) = −bi,1. Then, ∂bi,1

ui,1(t, b) = 0 and ∂bi,1
ui,0(t, b) = −1. So, the condition in Corollary 1 reduces to

E[vi,1|ti, si,1 = bi,1]fs−i,1 (bi,1|ti) = 1.

This means that the marginal cost of bidding is 1, just because the payment is made with certainty. The basic principle of
bidding (that subsums to the above equation) says that the optimal bid is chosen to equalize the marginal benefit of bidding
(the left hand side) to 1. Under the same hypothesis of monotonicity and symmetry, they find the following differential
equation:

db
dt

(ti) = E[vi,1|ti, t(−i) = ti]ft(−i) (ti|ti),

whose solution they show to be an equilibrium under affiliation.

Example 9 (War of attrition—single-object auction). In the war of attrition, Krishna and Morgan (1997) model is equivalent to
ui,1(t, b) = vi,1(t) + bi,1 − si,1 and ui,0(t, b) = −bi,1. Then, ∂bi

ui,1(t, b) = 1 and ∂bi,1
ui,0(t, b) = −1. So, the condition in Corollary

1 reduces to

E[vi,1|ti, si,1 = bi,1]fsi,1 (bi,1|ti) = 1 − Fsi,1 (bi,1|ti).

Note that the marginal cost of bidding is less than 1, because the winner does not need to pay his bid. Again, with
monotonicity and symmetry, they derive the equation

db
dt

(ti) = E[vi,1|ti, t(−i) = ti]
1 − Ft(−i) (ti|ti)

ft(−i) (ti|ti)
,

and the equilibrium is shown to exist under affiliation.

Example 10 (Double auction). In the analysis of a double auction with private values, risk neutrality, independent types
and symmetry among buyers and sellers, Williams (1991) assumes that the payment is determined by the buyer’s bid. So,
it is optimum for the seller to bid his value. To analyze the behavior of the buyer i, Williams (1991) reaches the following
expression:

∂bi
˘i(v, ˇ) =

[
nf1(ˇ)Kn,m(b−1(ˇ), ˇ) + (m − 1)

f2(b−1(ˇ))
b′(ˇ)

Ln,m(b−1(ˇ), ˇ)

]
(v − ˇ) − Mn,m(b−1(ˇ), ˇ), (7)
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where b denotes here the symmetric bidding function followed by all buyers, f1 is the common density function of sellers, f2
is the common density function of buyers, n is the number of sellers, m is the number of buyers and Mn,m(·, ·) is given by13

Mn,m(v, ˇ) ≡
∑

i + j = m,
0 ≤ i ≤ m − 1

(
n
j

)(
m − 1

i

)
F1(ˇ)jF2(v)i(1 − F1(ˇ))n−j · (1 − F2(v))m−1−i;

Kn,m(v, ˇ) ≡
∑

i + j = m − 1,
0 ≤ i ≤ m − 1

(
n − 1

j

)(
m − 1

i

)
F1(ˇ)jF2(v)i · (1 − F1(ˇ))n−1−j(1 − F2(v))m−1−i;

Ln,m(v, ˇ) ≡
∑

i + j = m − 1,
0 ≤ i ≤ m − 1

(
n
j

)(
m − 2

i

)
F1(ˇ)jF2(v)i(1 − F1(ˇ))n−j · (1 − F2(v))m−2−i.

The expression (7) is just a special case of (3). To see this, observe that Fb(−i)
(ˇ), the probability that the threshold bid is

less or equal to ˇ, is given by the probability of the union of following disjoint events: there are i bids of buyers and j bids of
sellers below or equal to ˇ and i + j = m (because the m th bid determines the threshold between winning and losing). Thus,

Fsi,1 (ˇ) =
∑

i + j = m,
0 ≤ i ≤ m − 1, 0 ≤ j ≤ n

(
n
j

)(
m − 1

i

)
F1(ˇ)j · F2(b−1(ˇ))i(1 − F1(ˇ))n−j(1 − F2(b−1(ˇ)))

m−1−i
,

which is equal to Mn,m(b−1(ˇ), ˇ) above. Now, it is a matter of length but elementary derivation to confirm that

fsi,1 (ˇ) = nf1(ˇ)Kn,m(b−1(ˇ), ˇ) + (m − 1)
f2(b−1(ˇ))

b′(ˇ)
Ln,m(b−1(ˇ), ˇ),

which concludes the proof of the claim.

Example 11 (Multiple object discriminatory auction). Let ui,0 = 0, ui,k(t, b) = vi,k(t) − bi,k. Then ∂bi,j
ui,k(t, b) = 0 if j /= k and

−1 if j = k. It is easy to show that the condition in Corollary 1 reduces to

bi,k = E[vi,k(t)|ti, si,k = bi,k] −
Fsi,k

(bi,k|ti)

fsi,k
(bi,k|ti)

.

Notice that demand reduction is an inmediate consequence of this characterization.

Example 12 (Multiple object Vickrey auction). Let ui,0 = 0, ui,k(t, b) = vi,k(t) − si,k. Then ∂bi,j
ui,k(t, b) = 0. Therefore the con-

dition in Corollary 1 reduces to

bi,k = E[vi,k(t)|ti, si,k = bi,k].

Therefore in a general Vickrey Auction, an optimal bid is truthful.

Example 13 (Uniform price auction). Let ui,0 = 0, ui,k(t, b) = vi,k(t) − p, where p is the payment, which is equal for all units
and bidders. There are two common rules for the uniform price auction. One is the highest looser bid, which is the uniform
price auction described by Krishna (2002). In this case, the payment is equal to the highest bid among those bids that do not
receive the object. A variant is to put the payment equal to the lowest winning bid. We treat both below. Note that for any k,

∂bi,j
ui,k(bi,j, ·) = −∂bi,j

p(b) =
{

−1, if bi,j determines the payment,
0, otherwise.

In the case of the lowest winning bid, bi,j determines the payment in the event si,j < bi,j and bi,j+1 < si,j+1.14 This event
is contained in the event [bi,k > si,k] if and only if k ≤ j. Thus, the first order condition becomes:

bi,j = E[vi,j(t)|ti, si,j = bi,j] − j
Pr[si,j+1 > bi,j+1, bi,j > si,j]

fsi,j
(bi,j|ti)

.

13 To obtain Kn,m(·, ·) just substitute n − 1 for n where it occurs in Mn,m(·, ·). To obtain Ln,m(·, ·), substitute m − 2 for m − 1 where it occurs in Mn,m(·, ·).
14 We do not consider situations where two bids are equal.



L.I. de Castro, A. Riascos / Journal of Mathematical Economics 45 (2009) 559–575 567

In the case of the highest loosing bid, bi,j determines the payment if bi,j < si,j , bi,j−1 > si,j−1 and bi,j > si,j−1. Similarly,

bi,j = E[vi,j(t)|ti, si,j = bi,j] − (j − 1)
Pr[si,j+1 > bi,j+1, bi,j > si,j]

fsi,j
(bi,j|ti)

.

Notice that demand reduction is an inmediate consequence of this characterization (see also Corollary 3 below).

4. Applications

Here we point out some potential applications and how our main result can be used to give a simple prove of some useful
facts about auctions. Some of these results are new.

For all results below, we assume that the strategies b−i of bidder i’s opponents are such that the distribution of si is
absolutely continuous with respect to the Lebesgue measure. Thus, the payoff is given only by the integral of its derivative.

4.1. Sufficient conditions for truthful bidding

It is known that second price auctions lead to bidding equal to the truthful expected value by the bidder. This can be easily
seen from the first order condition (6) for this auction (see Example 7), reproduced below:

bi,1 = E[vi,1|ti, si,1 = bi,1].

One may believe that the fact that truth-telling is optimal in the second-price auctions comes from the fact that the
payment does not depend on the player’s bid. This is not quite right, since a bidder’s payment also does not depend on the
player’s bid in the third price auction, but the optimal bid in a third price auction is not the true player’s valuation of the
object.15 Thus, the literature seems to lack a completely clear characterization of what leads to truthful bidding in auctions.
The following results clarifies the two conditions that are sufficient for this.

Proposition 1. Assume the conditions of Corollary 1. (1) If the bid bi,j never modifies the payment of any unit, then it is optimal
for bidder i to bid bi,j such that:

E[ui,j(·)|ti, si,j = bi,j] = 0.

(2) In addition to the previous condition, assume that ui,j(t, b) = vi,j(t) − pi,j(b), and that the payment p(b) is bi,j in case of a
relevant tie at bi,j = si,k. Then the optimal bid is to bid the expected value of the unit:

bi,j = E[vi,j(t)|ti, si,j = bi,j].

Proof. (1) It is sufficient to examine the expression of ∂bi,j
˘i(ti, (ˇ, bi,−j), b−i). (2) Observe that in the conditional event

si,j = bi,j , the payment is p(b) = bi,j . �

It is instructive to rephrase the above result in terms of the basic principle of bidding. The first condition requires that the
marginal cost of bidding be zero. By the basic principle of bidding, one also has that the marginal benefit of bidding is zero.
The second condition implies that the marginal benefit of bidding is the expected value of th object less the bid. From this,
it follows that the bid is truthful. Some known results are immediate corollaries:

Corollary 3. The first (highest) bid in the uniform price auction (with payment equal to the highest looser bid) is truthful.16

Proof. The first bid cannot affect the payment of a winning bidder in a uniform auction, and thus the condition in (1) is
satisfied. It is easy to see that the condition in (2) is also satisfied. �

Corollary 4. The bids in the Vickrey auction are truthful.

Proof. It is immediate to see that Vickrey auction satisfy the conditions in (1) and (2). �

It is useful to illustrate that the condition in (1) is not sufficient to get the result. The above mentioned case of the third
price auction illustrates the point:

Example 14 (Third price auction). Consider the third-price auction, that is, the auction of a single object with n ≥ 3 bidders,
where the bidder with the highest bid wins and pays the third highest bid. Of course, the payment never depends on the
winner’s bid, that is, ∂bi,1

ui,1(t, b) = 0. Let us assume risk neutrality and private values, that is, ui,1(t, b) = ti − p(t). Then,
Proposition 1 (1) implies that: ti = E[p(b)|ti, si,1 = bi,1]. However, condition (2) is not satisfied because this is strictly below

15 We are grateful to Robert Marshall for making this observation. Example 14 was inspired by this.
16 Menezes and Monteiro (2005) exhibit a uniform auction where truthful bidding is not equilibrium (see their Theorem 23, p. 131). Their example does

not satisfy our assumptions because we assume away complementarities and flat demands, that is, the marginal value of an additional object should be
nonincreasing of the objects need to be decreasing.
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the bid bi,1 : si,1 is the second highest bid and the expected payment (expected value of the third highest bid) is strictly
below it. Thus, the optimal bid in a third price auction is above the own bidder’s value.

The following example is also a useful illustration of the failure of the conditions of Proposition 1.

Example 15 (Discriminatory highest others bid auction). Consider a multi-unit auction with a standard allocation rule, that is,
the highest K bids win the object. The payment of bidder i for unit j is given by max{bl,k : l /= i, bl,k ≤ bi,j}, that is, the payment
is the highest defeated bid, not given by bidder i himself. This payment rule is interesting because is is easy to see that the
payment for each unit dominates the payment for each unit in a standard Vickrey auction. In fact, in the standard Vickrey
auction, the payment for unit j is just si,j which is in general below max{bl,k : l /= i, bl,k ≤ bi,j}. Therefore, if equilibrium in this
auction were truthfull, the expected revenue of this auction would be above the Vickrey auction. Note also that condition
(2) of Proposition 1 is satisfied: in the event of a tie si,j = bi,j , the payment is max{bl,k : l /= i, bl,k ≤ bi,j} = si,j = bi,j . However,
condition (1) in Proposition 1 is not satisfied. This condition requires that each bidder’s bid does not modifies his payments,
but the payment for unit j increases if the set of bids {bl,k : l /= i, bl,k ≤ bi,j} changes with an increase of bi,j .17 Thus, bidding
in this auction is not truthful, which is in line with Krishna and Perry (1998) or Krishna (2002) which have shown that the
Vickrey auction gives the highest revenue among all truthful bidding mechanisms.

4.2. Sufficient conditions for increasing best reply

Let

Vi(bi, b−i) =
∫

˘i(ti, bi(ti), b−i) dti

be the ex-ante payoff. We define the interim and the ex-ante best-reply correspondence, respectively, by

�i(ti, b−i) ≡ argmaxˇ ∈B˘i(ti, ˇ, b−i),

and

�i(b−i) ≡ argmaxbi ∈L1([0,1],B)Vi(bi, b−i).

We need the following definition.

Definition 2. Given a partial order � on Ti, we say that a function g(t, b) is strictly increasing (non-decreasing) in ti if
t2
i

� t1
i

(t2
i
� t1

i
) implies g(t2

i
, t−i, b) > (≥)g(t1

i
, t−i, b) for all t−i, b.18

Let ≥ denote the coordinate-wise partial order in B, that is: b1
i

≥ b0
i

if b1
i,j

≥ b0
i,j

for all j = 1, . . . , K . We write b1
i

> b0
i

if

b1
i

≥ b0
i

and b1
i

/= b0
i
.

Proposition 2. Assume we are under the conditions of Corrollary 2 and that types are independent. Let � be a partial order on
Ti. For all k, j = 1, . . . , K , assume that ui,k(t, b) is absolutely continuous in t and b, and strictly increasing in ti; and ∂bi,j

ui,k(t, b)
is non-decreasing in ti (except, possibly in a set of null measure). Then the following holds:

1. For each ti, �i(ti, b−i) is non-empty.
2. Consider two types t1

i
, t2

i
, t2

i
� t1

i
, and best reply bids for them, that is, b1

i
∈ �i(t1

i
, b−i), b2

i
∈ �i(t2

i
, b−i) and assume that these

bids imply different probabilities of winning, i.e.,

Pr({t−i : ∃k such that ai,k(b1
i , b−i(t−i)) /= ai,k(b2

i , b−i(t−i))}) > 0.

Then ∼ (b1
i

> b2
i
).

Proof. See Appendix A. �

The unidimensional version of the above theorem was used by Araujo and de Castro (2008) to prove equilibrium existence
in single-unit auctions. The main role of this result in their equilibrium proof is to restrict the set of strategies to a compact
set (the set of non-decreasing functions). Restricted to this strategy set, they obtained approximated equilibria of perturbed
games, used compactness to obtain a converging subsequence and proved that the limit is equilibrium of the original auction.

17 There is also another way to see the same problem: Condition 1 assumed in Corollary 1 fails to be satisfied. This requires the utility functions to be
absolutely continuous, which implies that the utility functions are the integral of their (almost everywhere) derivative. But this is clearly false here (see
footnote 10).

18 Given the partial order �, we write x � y if x � y but ∼ (y � x).
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Maybe the above theorem could be equally useful in obtaining new equilibrium existence results for multiunit auctions, but
such results are out of the scope of this paper.

4.3. Identification of multi-unit auctions

In economic theory the problem of identification is whether a observable data, conditional to some theory, uniquely iden-
tify the unobservable primitives. In auctions, we condition to Bayesian–Nash equilibrium theory; observables are typically
all agents bids, equilibrium prices, agents identities and/or some covariates (such as interest rates, prices in secondary mar-
kets, etc.). Primitives of any auction include the set players, the information structure, the valuation or preference structure
and players objectives. Therefore, the question is if different primitives for example, different preferences, have, under the
hypothesis that players play equilibrium strategies (Bayesian–Nash), undestinguishable observable outcomes such as equi-
librium prices. This problem is central for several normative issues since, for example, preferences, are the basis for welfare
comparisons among players. Moreover, in auction theory primitives are central to market design, optimality (revenue for the
auctioner), efficiency, reserve prices, etc. By now there is large literature on identification of unitary auctions (see Paarsh and
Hong, 2006 for an overview of the structural econometrics of auctions) but only recently the case of multiple unit demand
auctions has been the focus of attention. The problem is of interest in the applied literature because many important markets
rely on auction mechanisms to allocate goods or services and these are naturally modeled as markets for the allocation of
multiple units. Prominent examples are the markets for treasury auctions, the demand and supply of electricity and the
markets of emissions permits of carbon dioxide.19 Also, there has been an increasing effort in studying identification results
within a nonparametric setting (see Athey and Haile, 2002, 2007). Nonparametric identification is important because it gives
valid interpretations of estimates on finite samples. It also sheds light on what results of the theory are trully essential as
opposed to those that are just artifacts of a particular parametrization.

With very few exceptions (for example McAdams, 2007 that we comment below), most applied work rely on Wilson
(1979) share model. One of the salient features of this approach is the use of continuously differentiable bid functions for a
divisible good. In real markets, however, the particular institutional settings in which some of these auctions are carried make
both assumptions, divisible goods and the continuosly differentiable bid functions unattainable. For example, in England and
Wales spot electricity market generators make three bids out of their supply function.20 In Texas balancing electricity market,
bidders are allowed to offer up to 40 points of their supply curve and in the Colombian spot electricity market, generators
make price offers for generating a fixed amount of energy per generating unit. This examples question the continuosly
differentiable bid assumption. Now, almost always there are minimun incremental quantities and price offers. For example,
in England and Whales spot electricity markets, fractions of pennies are not allowed and in treasury auctions there is usually
a minimun denomination for bonds. Hence, it is important to study identification when bids are not continuous or quantities
and/or bids are discrete. Below we provide nonparametric identification results, in a nondifferentiable, discrete setting for
the two most important multi-unit auctions, the discriminatory auction and the uniform auction. More precisely, goods are
not divisible but bids are divisible (therefore, we have not taking in considerations all sources of discreetness in real markets).
To the extent of our knowledge, our result for the interdependent values discrete case discriminatory multi-unit auction is
new. Below we make detailed comments on some related existing results in the literature (in particular, Hortacsu, 2002;
Hortacsu and Puller, 2008).

4.3.1. Assumptions
Assume that all players are risk-neutral and that agents beliefs are fixed across auctions. Furthermore, assume that each

auction (information realization of signals) is independent.21 Our behavioral assumption is that in each auction players follow
best response strategies as characterized in this article. An important issue arises weather best response strategies satisfy
all our assumptions (for example, that the best response is interior to the set of feasible bids) or if they are unique.22 We set
aside these important issues by assuming that the same best response strategy is played in every auction for every player
and that Corollary 1 applies. Notice that our characterization results hold almost everywhere but in fact, this is all we need
for identification.

We assume the number of bidders is fixed in every auction and that the econometrician observes all players bids and
identities. In the case of symmetric bidders, only players bids are assumed to be observed.

4.3.2. Results
Recall Example 13 where we derived the first order conditions for the multi-unit uniform auction. Consider the case in

which agents pay the lowest winning bid (the other case is similar).

19 See Hortacsu (2002) for treasury auctions, Hortacsu and Puller (2007) and Wolak (2006) for electricity markets and Ellerman et al. (2000) for tradable
emission permits of carbon dioxide.
20 See Wolfram (1998).
21 In the auction literature on identification these assumptions are standard (see Athey and Haile, 2007).
22 Nondifferentiable bids and uniqueness are important issues addressed by McAdams (2007).
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Proposition 3. Consider the uniform price auction (see Example 13). If values are private and best reply strategies are not flat,
the marginal utility of an additional unit is nonparametrically identified from agents bid. Formally,

vi,j(ti) = bi,j + j
Pr[si,j+1 > bi,j+1, bi,j > si,j]

fs,j(bi,j|ti)
. (8)

If values are interdependent, we can only identify the conditional expectation E[vi,j(t)|ti, si,j = bi,j]. Formally,

E[vi,j(t)|ti, si,j = bi,j] = bi,j + j
Pr[si,j+1 > bi,j+1, bi,j > si,j]

fs,j(bi,j|ti)
. (9)

Proof. To the extent that all agents’ bids are observable and one is able to nonaparametrically estimate the second term
from the right hand side, identification follows.23 �

Eq. (8) is analogous to Eq. (2) in Hortacsu and Puller (2008). The main difference is that they assume a divisible good and
continuously differentiable bid functions. Although we do not address explicitly the role of discontinuous bid functions, it is
well known that some of the surprising results in share auctions (e.g. low equilibrium closing prices) are due to the special
nature of continuously differentiable bid functions (see Kremer and Nyborg, 2004).

Proposition 4. Consider the discriminatory multi-unit auction (see Example 11). Then, if values are private, the marginal utility
of an additional unit is nonparametrically identified from agents bid. Formally,

vi,j(ti) = bi,j +
Fsi,j

(bi,j|ti)

fsi,j
(bi,j|ti)

. (10)

If values are interdependent, we can only identify the conditional expectation E[vi,k(t)|ti, si,k = bi,k]. Formally,

E[vi,k(t)|ti, si,k = bi,k] = bi,k +
Fsi,k

(bi,k|ti)

fsi,k
(bi,k|ti)

. (11)

Proof. The same argument as before. �

Eq. (10) is analogous to Eqs. (2) and (8) in Hortacsu (2002). The first one assumes divisible goods and continuously
differentiable bids, the second assumes a divisible good but restricts bids to be in a discrete price grid.

In the case of interdependent values, notice the difference between Eq. (12) in Hortacsu and Eq. (11) above. In our case
we are able to identify the conditional expected value of valuation while in Hortacsu, these can only be done by imposing
additional assumptions (these are basically that, in his first order conditions, one is able to solve for the differential equation
in the expected value of valuation).

Finally a few comments on McAdams (2005). As opposed to most of the literature on identification in multi-unit auctions,
this paper characterizes the full set of valuations distributions that could be consistent with market data. As we pointed out
before, first order conditions provide only necessary conditions for a particular distribution of observable bids to be consistent
with optimal behavior. In case of multiple best reply strategies, we assumed that observables where sample observations from
the same best reply strategy. Clearly, to assume that observables are a sample observation of the same best reply strategy is an
important limitation of our identification strategy in multiple-unit auctions where, even under symmetry assumptions, there
can be multiplicity of equilibria. McAdams avoids these limitations by relying on nondifferentiable methods for characterizing
optimal behavior. His paper generalizes Propositions 2 and 3 in the case of private values to the case of none interior bid
functions. To the extent of our knowledge, our Proposition 4 with interdependent values is new.

5. Conclusion

Differential methods have a widespread use in auction theory. In this paper, we show that the standard approach of
taking the first order condition to characterize optimal bidding can be extended to multi-unit auctions in a general setting.
The main limitation of this approach is that it requires best reply interior bids. This can be an important limitation in some
applications. Another limitation is the fact that bidders place different bids for all K units. In many real world auctions, there
is a limit to the number of different bids that a bidder can place.

However, the differentiable approach provide a simple characterization that has an intuitive explanation. Other potential
applications are: (1) Using the sufficient conditions for truthful bidding, design auctions that are close to truthful, but
do not have the problems of Vickrey auctions. (2) It is likely that the monotone best reply result can be used in proving
equilibrium existence results. (3) Characterization of sufficient conditions for best reply strategies and testable restrictions.
(4) Characterize efficient multi-unit auctions and optimal behavior in other nonstandard multi-unit auction such as the
Spanish or the k th - average price auction.

23 This is the main idea put forward in nonparemetric identification results. Athey and Haile (2007) attribute this idea to Guerre et al. (2000) and earlier
papers of the same authors.
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Appendix A. Proofs

Proof of the payoff characterization lemma. The proof follows the demonstration of the Leibniz rule. The main point is
the use of a well known theorem on the derivatives of measures and its integral expression. The theorem we use is in Rudin
(1966).

Recall the expression for agents expected payoff:

˘i(ti, bi, b−i) =
∫

T−i

ui,0(·)�(dt−i|ti) +
K∑

k=1

∫
T−i

ui,k(·)1[bi,k>si,k]�(dt−i|ti) +
K∑

k=1

∫
T−i

ai,k(◦)ui,k(·)1[bi,k=si,k]�(dt−i|ti). (12)

Fix j, and consider each term above separately.

1. The first one has a derivative with respect to bi,j almost everywhere and is equal to E[∂bi,j
ui,0(·)|ti]. Also,

E[ui,0(·)|ti] =
∫

[bi,j+1,bi,j)

E[∂bi,j
ui,0(ˇ, ·)|ti] dˇ + c0,

where c0 is a constant.
2. If the distribution Fsi,k

(−|ti) has no atoms, the third term is equal to zero and its derivative exists and it’s zero.

3. Now consider the second term,
∫

T−i
ui,k(·)1[bi,k>si,k]�(dt−i|ti). There are two cases, j /= k and j = k. In the first case (j /= k),

let an → (bi,j)
+ (i.e., an > bi,j; the case an → (bi,k)− is analogous). We have∫

T−i

ui,k(ti, t−i, (an, bi,−j), b−i(t−i))1[bi,k>si,k]�(dt−i|ti) −
∫

T−i

ui,k(·)1[bi,k>si,k]�(dt−i|ti)

=
∫

T−i

(ui,k(ti, t−i, (an, bi,−j), b−i(t−i)) − ui,k(·))1[bi,k>si,k]�(dt−i|ti).

Since ui has bounded derivative with respect to almost all bi,j ,

lim
an→(bi,j)

+

ui,k(ti, t−i, (an, bi,−j), b−i(t−i)) − ui,k(·)
an − bi,j

= ∂bi,j
ui,k(·),

for almost all bi. By Lebesgue dominated convergence theorem,

lim
an→(bi)

+

∫
T−i

ui,k(ti, t−i, (an, bi,−j), b−i(t−i)) − ui,k(·)
an − bi,j

1[bi,k>si,k]�(dt−i|ti)

exists and it is equal to E[∂bi,j
ui,k(·)1[bi,k>si,k]|ti]. Also,

E[ui,k(·)1[bi,k>si,k]|ti] = c1 +
∫

[b0,j,bi,j)

E[∂bi,j
ui,k(ˇ, ·)1[bi,k>si,k]|ti],
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where c1 is a constant. From now on, we will omit the constant terms, since it is clear that they sum up to ˘i(ti, bj
i
, b−i).

In the second case (j = k), let an → (bi,k)+ (i.e., an > bi,k; the case an → (bi,k)− is analogous). Then,∫
T−i

ui,k(ti, t−i, (an, bi, k), b−i(t−i))1[an>si,k]�(dt−i|ti) −
∫

T−i

(·)1[bi,k>si,k]

=
∫

T−i

(ui,k(ti, t−i, (an, bi,−k), b−i(t−i)) − ui,k(·))1[an>si,k]�(dt−i|ti) +
∫

T−i

ui,k(·)(1[an>si,k] − 1[bi,k]>si,k
)�(dt−i|ti)

=
∫

T−i

(ui,k(ti, t−i, (an, bi,−k), b−i(t−i)) − ui,k(·))1[an>si,k]�(dt−i|ti) +
∫

T−i

ui,k(·)1[an>si,k≥bi,k]�(dt−i|ti).

Since ui has bounded derivative with respect to almost all bi,k,

lim
an→(bi,k)+

ui,k(ti, t−i, (an, bi,−k), b−i(t−i)) − ui,k(·)
an − bi,k

= ∂bi,k
ui,k(·),

for almost all bi,k. Also, 1[an>si,k] → 1[bi,k>si,k]. These imply that:

lim
an→(bi,k)+

ui,k(ti, t−i, (an, bi,−k), b−i(t−i)) − ui,k(·)
an − bi,k

1[an>si,k] = ∂bi,k
ui,k(·)1[bi,k>si,k],

for almost all bi,k and these functions are (almost everywhere) bounded. Again by Lebesgue dominated convergence
theorem, the limit

lim
an→(bi,k)+

∫
T−i

(ui,k(ti, t−i, (an, bi,−k), b−i(t−i)) − ui,k(·))
an − bi,k

1[an>si,k]�(dt−i|ti)

exists and it is equal to E[∂bi,k
ui,k(·)1[bi,k>si,k]|ti]. Also,

E[ui,k(·)1[bi,k>si,k]|ti] =
∫

[b0,k,bi,k)

E[∂bi,k
ui,k(ti, t−i, (ˇ, bi,−k), b−i(t−i))1[ˇ>si,k]|ti] dˇ.

Now, we want to determine:

lim
an→(bi,k)+

1
an − bi,k

∫
T−i

ui,k(·)1[an>si,k≥bi,k]�(dt−i|ti).

For each each ti ∈ Ti and bi fixed, define the signed measure 	 over R by24

	(V ; ti, bi, b−i) ≡
∫

T−i

ui,k(·)1[si,k ∈ V ]�(dt−i|ti).

24 On a �-field this is synonymous of a countably additive set function.
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Then,

lim
an→(bi,k)+

1
an − bi,k

∫
T−i

ui,k(·)1[an>si,k≥bi,k]�(dt−i|ti) = lim
an→(bi,k)+

1
an − bi,k

	([bi,k, an); ti, bi, b−i)

= lim
an→(bi,k)+

	([bi,k, an); ti, bi, b−i)
m([bi,k, an))

,

where m is Lebesgue measure over R. By Theorem 8.6 of Rudin (1966) this limit exists m-almost everywhere in bi,k and
we call it D	(ti, bi, b−i). Also, D	 coincides almost everywhere with the Radon–Nikodym derivative (d	/dm)(ti, bi, b−i).
Therefore,

	(V ; ti, bi, b−i) =
∫

V

d	

dm
(ti, bi, b−i) dm + 	⊥(V ; ti, bi, b−i),

where 	⊥ denotes the singular part of 	, and it has the property

lim
an→(bi,k)+

	⊥([bi,k, an); ti, bi, b−i)
m([bi,k, an))

= 0

by the same theorem.
It is easy to see that 	 is absolutely continuous with respect to the distribution Fsi,k

(·|ti). The Radon–Nikodym Theorem
guarantees the existence of the Radon–Nikodym derivative of 	 with respect to the distribution of Fsi,k

(·|ti), which we
denote by g. Therefore, g is such that

	(V ; ti, bi, b−i) =
∫

V

g(ˇ)Fsi,k
(dˇ|ti) =

∫
V

g(ˇ)fsi,k
(ˇ|ti) dˇ

and by definition:

	(V ; ti, bi, b−i) ≡
∫

T−i

ui,k(·)1[si,k ∈ V ]�(dt−i|ti) = E[ui,k(·)1[si,k ∈ V ]|ti] =
∫

[b0,k,∞)

E[ui,k(·)1[si,k ∈ V ]|ti, si,k = ˇ]Fsi,k
(dˇ|ti)

=
∫

V

E[ui,k(·)|ti, si,k = ˇ]Fsi,k
(dˇ|ti) =

∫
V

E[ui,k(·)|ti, si,k = ˇ]fsi,k
(ˇ|ti) dˇ.

Therefore, by the unicity of the Radom Nikodyn derivative of 	 with respect to Lebessgue measure m, we have that:

g(ˇ) = E[ui,k(·)|si,k = ˇ]fsi,k
(ˇ|ti),

m-almost everywhere in ˇ.



574 L.I. de Castro, A. Riascos / Journal of Mathematical Economics 45 (2009) 559–575

Thus,

∂bi,j
˘i(ti, (ˇ, bi,−j), b−i) = E[∂bi,j

ui,0(ˇ, ·)|ti]
K∑

k /= j

E[∂bi,j
ui,k(ˇ, ·)1[bi,k>si,k]|ti] + E[∂bi,j

ui,j(ˇ, ·)1[ˇ>si,k]|ti]E[ui,j(·)|ti, si,j

= ˇ]fsi,k
(ˇ|ti).

Finally, by the Lebesgue dominated convergence theorem,

˘i(ti, bi, b−i) =
∫

[bi,j−1,bi,j)

∂bi,j
˘i(ti, (ˇ, bi,−j), b−i) dˇ +

∫
[bi,j−1,bi,j)

E[ui,j(·)|ti, si,k

= ˇ]F⊥
si,j

(ˇ|ti)
K∑

k=1

∫
T−i

ai,k(◦)ui,k(·)1[bi,k=si,k]�(dt−i|ti).

This concludes the proof. �

Proof of Proposition 2.

(i) Since B is compact and ˘i(ti, ·, b−i) is continuous if Fb−i
(·) is absolutely continuous, the conclusion is immediate.

(ii) We will make use of the expression:

∂bi,j
˘i(ti, (ˇ, bi,−j), b−i) = E[∂bi,j

ui,0(ˇ, ·)|ti] +
∑
k /= j

E[∂bi,j
ui,k(ˇ, ·)1[bi,k>si,k]|ti]

+ E[∂bi,j
ui,j(ˇ, ·)1[ˇ>si,j]|ti] + E[ui,j(·)|ti, si,j = ˇ]fsi,j

(ˇ|ti).

Since b1
i

> b2
i
, we can choose a curve ˛ : [0, 1] → B, such that ˛(0) = b2

i
, ˛(1) = b1

i
and

˛′
j(s) ≥ 0, ∀j, s ∈ [0, 1] and ∃j such that ˛′

j(s) > 0, ∀s ∈ [0, 1]. (13)

By assumption, ∂bi,j
ui,k(t0

i
, ·) ≤ ∂bi,j

ui,k(t1
i

, ·) for all k. Thus,

E[∂bi,j
ui,k(t0

i , ·)1[˛k(s)>si,k]] ≤ E[∂bi,j
ui,k(t1

i , ·)1[˛k(s)>si,k]]. (14)

Since [0, 1]n−1 and Bn are compact and ui is (absolutely) continuous, there exists ı > 0 such that ui,k(t1
i

, t−i, b) + 2ı <

ui,k(t2
i

, t−i, b) for all t−i ∈ [0, 1]n−1, all b ∈ Bn and all k. For fixed bid ˇ ∈ B and j, define the functions

g1(t−i) = ui,j(t
1
i , t−i, ˇ, b−i(t−i)) and g2(t−i) = ui,j(t

2
i , t−i, ˇ, b−i(t−i)).

Then, g1(t−i) + 2ı < g2(t−i). By the positivity of conditional expectations,25

E[g2 − g1 − 2ı|si,j = ˇ] ≥ 0.

Thus, from the independence of types, we conclude that

E[ui,j(t
1
i , ·)|ti, si,j = ˇ] + ı < E[ui,j(t

2
i , ·)|ti, si,j = ˇ]. (15)

Then, (14) and (15), and the expression of ∂bi
˘i(ti, ˇ, b−i) given by the characterization lemma imply that for almost

all ˇ,

∇bi
˘i(t

2
i , ˛(s), b−i) > ∇bi

˘i(t
1
i , ˛(s), b−i) + ıfs(˛(s)), (16)

25 See, for instance, Kallenberg (2002), Theorem 6.1, p. 104.
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where fs(˛(s)) denotes the vector (fsi,1 (˛1(s)), . . . , fsi,K
(˛K (s))). The assumption on the distribution implied by b−i allow

to write the difference ˘i(t2
i

, b1
i
, b−i) − ˘i(t2

i
, b2

i
, b−i) as an integral:

˘i(t
2
i , b1

i , b−i) − ˘i(t
2
i , b2

i , b−i) =
∫

[0,1]

∇bi
˘i(t

2
i , ˛(s), b−i) · ˛′(s) ds >

∫
[0,1]

∇bi
˘i(t

1
i , ˛(s), b−i) · ˛′(s) ds

+ ı
∑

j

∫
[0,1]

fsi,j
(˛j(s))˛′

j(s) ds ≥ ı
∑

j

∫
[0,1]

fsi,j
(˛j(s))˛′

j(s) ds ≥ 0,

where the first inequality comes from (13) and (16); the second comes from the fact that b1
i

∈ �i(t1
i

, b−i), that is,

˘i(t
1
i , b1

i , b−i) − ˘i(t
1
i , b2

i , b−i) =
∫

[0,1]

∇bi
˘i(t

1
i , ˛(s), b−i) · ˛′(s) ds ≥ 0;

and the third comes from ˛′
j
(s) ≥ 0 for all j. Now, this implies that ˘i(t2

i
, b1

i
, b−i) > ˘i(t2

i
, b2

i
, b−i), which contradicts the

fact that b2
i

∈ �i(t2
i

, b−i). �
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