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Abstract
This paper axiomatizes static and dynamic quantile preferences. Static quantile pref-
erences specify that a prospect should be preferred if it has a higher τ -quantile, for
some τ ∈ (0, 1), while its dynamic counterpart extends this to take into account a
sequence of decisions and information disclosure. An important motivation for the
axiomatization that leads to this preference is the separation of tastes and beliefs.
We first axiomatize quantile preferences for the static case with finite state space and
then extend the axioms to the dynamic context. The dynamic preferences induce an
additively separable quantile model with standard discounting, that is, the recursive
equation is characterized by the sum of the current period utility function and the
discounted value of the certainty equivalent, which is a quantile function. These pref-
erences are time consistent and have a simple quantile recursive representation, which
gives the model the analytical tractability needed in several fields in financial and eco-
nomic applications. Finally, we study the notion of risk attitude in both the static and
recursive quantile models. In quantile models, the risk attitude is completely captured
by the quantile τ , a single-dimensional parameter. This is simpler than in expected
utility models, where in general the risk attitude is determined by a function.
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1 Introduction

Since Daniel Bernoulli’s solution to the St. Petersburg’s Paradox in 1738, expected
utility (EU) has become the standard model for studying choices under risk. Neverthe-
less, this framework has been subjected tomany criticisms and disqualifying evidence.
As a result, in the intervening almost 300 years of research, and especially in the last
three decades, many alternative models have been considered and thoroughly scruti-
nized. It is interesting, however, to observe how little attention has been devoted to the
study of quantile utility maximization as an alternative model, even though quantile
maximization is simple and, at least in some settings, provides a compelling choice.
For instance, quantiles have been used for decision making in banking and investment
(in the form of Value-at-Risk), in the mining, oil and gas industries (in the form of
“probabilities of exceeding” a certain level of production), and importantly, quantile
maximization offers a simple solution to the St. Petersburg’s Paradox.1

In this paper, we are concerned with quantile preferences. Namely, a prospect (or
random variable) X is considered better than Y if its τ -quantile is larger: Qτ [X ] >

Qτ [Y ], for a given τ ∈ (0, 1). Manski (1988) was the first to study such preferences,
which were recently axiomatized by Chambers (2009) and Rostek (2010). Rostek
(2010) axiomatized the quantile preferences in the context of Savage (1954)’s subjec-
tive uncertainty framework, while Chambers (2009) works in a risk setting, where the
utility function and the probability distributions are already fixed. Rostek (2010) dis-
cusses several advantages of the static quantile preference, such as robustness, ability
to deal with categorical (instead of continuous) variables, and the flexibility of offering
a family of preferences indexed by quantiles. We suggest a new justification for quan-
tile preferences: the separation of tastes and beliefs. The relevance of this objective
was put forward by Ghirardato et al. (2005). Since “the tastes of a decision maker
are quite stable, while his beliefs may change in the course of making decisions,”
they argue that it is “customary to seek representations of preferences which cleanly
separate the tastes component from the beliefs component” (p. 129–130). They do not
insist in a complete separation of tastes and beliefs as we do here, however, because
this complete separation would rule out many preferences usually considered by deci-
sion theorists (see their Remark 1, p. 133 and the discussion in Sect. 3 below). The
separation of tastes and beliefs leads to simplicity, objectivity, and transparency in
choices.2

Applications of quantile preferences have been recently studied. For instance, Bhat-
tacharya (2009) studies the problem of optimally dividing individuals into peer groups
to maximize social gains from heterogeneous peer effects using a quantile utility dis-
tribution for the planner. de Castro et al. (2019) develop a model for optimal portfolio
allocation for an investor with quantile preferences. From an experimental point of
view, de Castro et al. (2020) find that the behavior of between 30% and 50% of the
individuals can be better described with quantile preferences rather than EU.

1 Indeed, recall that the problem in the St. Petersburg’s Paradox is the fact that the presented lottery has an
infinite expectation and, therefore, the received wisdom at the time—maximize expected values—was not
applicable. In contrast, this lottery (as any other) has a finite τ -quantile for any τ ∈ (0, 1).
2 Example 3.3 in Sect. 3.1 discusses an empirical setting where this separation is important.
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Dynamic quantile preferences have also been studied by recent works. For instance,
Giovannetti (2013) studies a two-period economy for an asset pricing model under
quantile preferences maximization. de Castro and Galvao (2019) suggest a dynamic
model of rational behavior under uncertainty, in which the agent maximizes the stream
of the future τ -quantile utilities, but do not provide an explicit axiomatization for the
recursive quantile preferences. This paper fulfills this gap. Although quantiles do not
share some of the helpful properties of expectations, such as linearity and the law of
iterated expectations, de Castro and Galvao (2019) establish all the standard results in
dynamic models.3 The dynamic quantile preferences have several advantages as they
allow for the separation between risk aversion and elasticity of intertemporal substi-
tution (EIS), which the standard EU model is not able to deliver, while maintaining
monotonicity. Note that Epstein and Zin (1989) and Weil (1990) are the alternative
framework mostly used to obtain the separation between EIS and risk aversion, in
applied works, but since they do not satisfy monotonicity, they may lead to some
unusual behavior.4

This paper contributes to the literature by providing axiomatizations of the static and
the recursive quantile preferences. A central objective is to establish foundations for
the dynamic preference, but for technical reasons, we are not able to use the previous
existing axiomatizations for the static case and develop an alternative axiomatization
of the static quantile preference. In particular, we are not able to appeal directly to
the results of Chambers (2009) nor Rostek (2010) because the former works in a
setting of risk, instead of uncertainty, while the latter requires an infinite state space,
which is not convenient for the axiomatization of the dynamic preferences.We present
an axiomatization of a preference over risky prospects based on the quantile of the
distribution of outcomes. This choice rule is discussed, justified and deduced from
axioms both in the static (with just one period) and dynamic (with many periods)
settings.

The main axioms that provide the quantile preferences representation in the static
case are Monotonicity, Ordinality, and Betting Consistency. Monotonicity stipulates
that if for each state of nature, the consequence of some act f is preferred to that of
another act g, then f is preferred to g and it is a very standard property, valid by most
preferences. Ordinality requires that increasing transformations of a pair of acts do not
change their ranking. Ordinality is central for the developments in this paper. Finally,
Betting Consistency allows writing the aggregation operator as a quantile with respect
to some probability measure.

Next we develop an axiomatization of the recursive quantile preferences. For this,
we apply the results in Bommier et al. (2017). When extending the results to the
quantile recursive case, in addition to the standard axioms in Bommier et al. (2017),
we extend the Monotonicity, Ordinality, and Betting Consistency axioms from the
static to the dynamic context. We show that the dynamic quantile preferences induce
an additively separable quantile model with standard discounting, that is, the recursive

3 de Castro and Galvao (2019) show that the quantile preferences are dynamically consistent, the cor-
responding dynamic problem yields a value function, via a fixed point argument, this value function is
concave and differentiable, the principle of optimality holds, and derive the corresponding Euler equation.
4 See Bommier et al. (2017) and its discussion of their axiom D7 and the Epstein–Zin–Weil preference
(see Epstein and Zin 1989; Weil 1990). See also de Castro and Galvao (2019).

123



L. de Castro, A. F. Galvao

equation is characterized by the sum of the current period utility function and the
discounted value of the certainty equivalent, which is a quantile function. The recursive
equation is the central element in the definition of the dynamic quantile preferences.
Thus, this paper complements de Castro and Galvao (2019) by providing a formal
axiomatization for the dynamic model of rational behavior under uncertainty.

Finally, we examine the notion of risk attitude in both static and recursive quantile
models. The notion of comparative risk attitude in quantile models is captured by the
single dimensional quantile τ ∈ (0, 1). This is in contrast with the EU models, where
the risk attitude needs to be defined by a function.

The remaining of the paper is organized as follows. Section 2 presents the setting
and definitions. Section 3 develops an axiomatization for the static model. Section 4
provides an axiomatization for the recursive quantile preference. Section 5 discusses
the risk attitude for static and dynamic quantile models. Finally, Sect. 6 concludes.
We relegate all proofs to the Appendix.

2 Setting and definitions

This section defines quantiles and introduces terminology used later. Given a random
variable (r.v.) X , let FX (or simply F) denote its cumulative distribution function
(c.d.f.), that is, FX (α) ≡ Pr[X ≤ α]. The quantile function Q : [0, 1] → R =
R ∪ {−∞,+∞} is the generalized inverse of F :

Q(τ ) ≡
{
inf{α ∈ R : F(α) ≥ τ }, if τ ∈ (0, 1]
sup{α ∈ R : F(α) = 0}, if τ = 0.

The definition is special for τ = 0 so that the quantile assumes a value in the support
of X .5 It is clear that if F is invertible, that is, if F is strictly increasing, its generalized
inverse coincide with the inverse, that is, Q(τ ) = F−1(τ ). Usually, it will be important
to highlight the randomvariable towhich the quantile refers. In this casewewill denote
Q(τ ) by Qτ [X ] or by Qp

τ [X ] if it is convenient to be explicit about the probability
p on the underlying space. The cases τ = 0 and τ = 1 are not relevant for most
applications and bring additional technical difficulties that would require us to state
special cases in our results. For those reasons, we will follow de Castro and Galvao
(2019) and restrict our attention to the case τ ∈ (0, 1).

A well-known and useful property of quantiles is “invariance” with respect to
monotonic transformations, that is, if ξ : R → R is a continuous and strictly increasing
function, then6

Qτ [ξ(X)] = ξ (Qτ [X ]) . (1)

See other properties of quantiles in de Castro and Galvao (2019).

5 Indeed, inf{α ∈ R : F(α) ≥ 0} = −∞, no matter what is the distribution.
6 In fact, (1) holds for (weakly) increasing and left-continuous ξ : R → R. See de Castro and Galvao
(2019, Lemma A.2, p. 1927).
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Let S denote the finite set of states of the world and let � be an algebra of subsets
of S. Any E ∈ � is called an event. The topological space ϒ is called the set of
consequences. Any �-measurable function f : S → ϒ that takes only finitely many
values is called an act and F denotes the set of all acts. Endow F with the product
topology of ϒ S . An event E is null if for all f , g ∈ F , if ( f (s) = g(s),∀s /∈ E)

implies f ∼ g. We denote by xEy the act f ∈ F defined by f (s) = x if s ∈ E and
f (s) = y if s /∈ E . As usual, ϒ is seen as a subset of F . Also as usual, we write
f � g if ( f � g) ∧ ¬(g � f ), f ∼ g if ( f � g) ∧ (g � f ), f � g if g � f and
analogously for ≺.

We denote by B0(�) the set of all real-valued �-measurable real-valued simple
functions on S. Thus, if u : ϒ → R and f ∈ F , u( f ) = u ◦ f ∈ B0(�). We denote
by B(�) the vector space of the real-valued, bounded, �-measurable functions. The
subset of B0(�) (respectively, of B(�)) comprised of the functions that take values
in K ⊆ R is denoted by B0(�, K ) (respectively, B(�, K )). If E ∈ �, we denote
by 1E ∈ B(�, [0, 1]) the indicator function of E ⊂ S, that is, 1E (s) = 1 if s ∈ E
and 1E (s) = 0 otherwise. We will abuse notation and denote, for any k ∈ R, k1S by
simply k.

We will need to assume further structure for the set of consequences ϒ or the set
of acts F that will be discussed below.

3 Static quantile preferences

This section provides two alternative axiomatizations of the static quantile preferences.
This is a building block for the axiomatization of the recursive preferences in the next
section. Section 3.1 presents an axiomatization in the familiar Anscombe–Aumann
setting. In this subsection we also discuss the separation of tastes and beliefs as studied
by Ghirardato et al. (2005). Section 3.2 presents an axiomatization for the topological
case. The axiomatization in this setting is important because it will be used later, in the
axiomatization of the dynamic preferences. Both axiomatizations include Ordinality,
to be defined below, as its main axiom.

3.1 Axiomatization in the Anscombe–Aumann setting

Here we assume that ϒ is a convex subset of a vector space. This assumption is
usually justified by thinking that ϒ is the set of all the lotteries on a set of prizes, as
in Anscombe and Aumann (1963). Given f , g ∈ F and α ∈ [0, 1], we denote by
α f + (1 − α)g the act that yields α f (s) + (1 − α)g(s) if s ∈ S obtains. Let K ⊆ R

and 0 ∈ int(K ). A functional I : B0(�, K ) → R is a certainty equivalent if and
only if, for all ϕ,ψ ∈ B0(�, K ), k ∈ K and α ∈ (0, 1) the following conditions are
satisfied:7

(i) ϕ(s) ≥ ψ(s)∀s ∈ S implies I [ϕ] ≥ I [ψ];
7 This corresponds to normalized niveloids, in the terminology ofMaccheroni et al. (2006a); see in particular
their Lemma 25. We adopt the terminology that is more usual in the decision theory literature. See, e.g.,
Bommier et al. (2017) and Strzalecki (2013) for more discussion.
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(ii) I [αϕ + (1 − α)k] = I [αϕ] + (1 − α)k;
(iii) I [k] = k.

The following axioms about the binary relation� onF are standard and taken from
Maccheroni et al. (2006a). See the paper for a detailed discussion.

Axiom Q1 (Monotonic, Non-trivial Weak order). The binary relation � is com-
plete, transitive, non-trivial (that is, there exist f , g ∈ F such that f � g) and
monotonic (that is, for any f , g ∈ F , ( f (s) � g(s),∀s ∈ S) ⇒ f � g).
AxiomQ2| (Continuity). If f , g, h ∈ F , the sets {α ∈ [0, 1] : α f +(1−α)g � h}
and {α ∈ [0, 1] : h � α f + (1 − α)g} are closed.
AxiomQ3 (WeakCertainty Independence). If f , g ∈ F , x, y ∈ ϒ , and α ∈ (0, 1),
α f + (1 − α)x � αg + (1 − α)x ⇒ α f + (1 − α)y � αg + (1 − α)y.

These axioms lead to a general and useful representation:

Lemma 3.1 (Maccheroni et al. 2006a, Lemma 28, p. 1477) A binary relation � on
F satisfies Axioms Q1–Q3 if and only if there exist a nonconstant affine function
u : ϒ → R and a certainty equivalent Iu : B0(�, u(ϒ)) → R such that

f � g ⇐⇒ Iu[u ◦ f ] ≥ Iu[u ◦ g]. (2)

The above representation suggests the following interpretation of the separation of
“tastes” and “beliefs”. While u : ϒ → R captures the “tastes” of the decision maker
(DM) over consequences, the certainty equivalent Iu captures the DM’s “beliefs.” This
interpretation is mentioned by Strzalecki (2013, p. 1044) and Ghirardato et al. (2005),
among others. This analysis is based on two observations. First, the utility u : ϒ → R

indeed captures the preference over consequences, that is, for any x, y ∈ ϒ ,

x � y ⇐⇒ u(x) ≥ u(y). (3)

Thus, the “tastes over consequences” are completely defined by u : ϒ → R. Second,
the uncertainty over the states s ∈ S, on the other hand, is relevant and thus captured
only by Iu : B0(�, u(ϒ)) → R.8 For example, if Q3 is strengthened to the usual Inde-
pendence axiom, we obtain the expected utility representation and Iu is an expectation
operator that is pinned down by the DM’s beliefs over the states s ∈ S.

As mentioned in the introduction above, Ghirardato et al. (2005) argue that it is
desirable that the representation in (2) leads to a separation of “tastes” and “beliefs”.
By this separation, they mean the following: suppose that v : ϒ → R is another utility
function that represents the preference over the consequences ϒ :

x � y ⇐⇒ v(x) ≥ v(y). (4)

8 Notice that Iu can capture a part of the risk attitude or uncertainty attitude, that is, some “taste” over risk
or uncertainty, as Remark 3.6 below discuss in more detail. This is why we are emphasizing “tastes over
consequences” when talking about u.
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Presumably, we could also have a certainty equivalent Iv : B0(�, u(ϒ)) → R such
that

f � g ⇐⇒ Iv[v ◦ f ] ≥ Iv[v ◦ g]. (5)

Notice that the only difference between (2) and (5) is the change in the utility function
capturing the tastes over consequences. Since the beliefs do not change, we should
have Iu = Iv . This equality is exactly what they mean by complete separation of tastes
and beliefs. More formally,

Definition 3.2 A binary relation � on F for which (2) and (5) hold satisfy:

(i) complete separation of beliefs and tastes (over consequences) if (3) and (4) imply
Iu = Iv .

(ii) partial (or cardinal) separation of beliefs and tastes (over consequences) if (3),
(4) and the fact that v is a cardinal transformation of u (that is, there exists α > 0
and β ∈ R such that v(x) = αu(x) + β) imply Iu = Iv .

Thus, we have complete separation of tastes and beliefs if the functional does
not depend on the utility over consequences. The separation is partial or cardinal
if the functional is fixed only for cardinal transformations of the utility. Ghirardato
et al. (2005) focus only on partial separation of tastes and beliefs, while we focus on
complete separation.

The separation of tastes and beliefs is desirable and important in some, but cer-
tainly not all, circumstances. An example where we believe the complete separation
is important is given by the following:9

Example 3.3 Assume that the DMworks in a national development bank and evaluates
applications for financing public projects in a given country. The projects will lead
to outcomes in a set of consequences ϒ , but are subjected to uncertain conditions,
modeled as a set S. Thus, projects may be viewed as functions f : S → ϒ . Using
data from past similar projects, she is able to construct a model that derives beliefs
over the states s ∈ S. The DM needs to explain her choices of projects to the board of
the public development bank.

The members of the board, which may represent different segments of the country
population, may have different attitudes towards risk. They all agree that more money
is more valuable than less, but some are more risk averse than others. Therefore, the
utility functions u : ϒ → R and v : ϒ → R of two board members may agree
on the order over consequences (that is, (3) and (4) hold), but v is not a cardinal
transformation of u.

The data from past similar projects helps to pin down beliefs and define a func-
tional I : B0(�) → R to support her decision over projects. We assume that this
functional was previously agreed upon, based on the data. Her criterion has the fol-
lowing property: project f : S → ϒ is at least as good as project g : S → ϒ if and

9 The example is inspired in a real-world case. The authors have learned that the Brazilian’s Development
Bank (BNDES), when evaluating the prospects of projects on energy, use a quantile criterion to determine
whether or not the project should be financed.
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only if

I [u ◦ f ] ≥ I [u ◦ g] ⇐⇒ I [v ◦ f ] ≥ I [v ◦ g],

for any functions u, v : ϒ → R such that ∀x, y ∈ ϒ , u(x) ≥ u(y) ⇐⇒ v(x) ≥
v(y). In this way, the DM may argue that her criterion does not favor any particular
member of the board and treats them equally. She can do this because her criterion
allows a complete separation of tastes and beliefs. Actually, if the projects’ conse-
quences are given already in real values (money), then her criterion can be summarized
simply as

f � g ⇐⇒ I [ f ] ≥ I [g].

Thus, the DM does not need to use any arbitrary function u : ϒ → R. Her criterion
is completely determined by the functional I . This leads to a transparent procedure to
rank projects, reducing the possibility of manipulation and corruption in the choices
of the public development bank.

Remark 3.4 In this example, the objectivity of the procedure, with minimal subjective
elements, is the central quality. Since objectivity and subjectivity are the main themes
of Gilboa et al. (2010), it is useful to observe that our treatment of those concepts is
slightly different from theirs. They say that a choice “is objectively rational if the DM
can convince others that she is right in making it,” while it “is subjectively rational if
others cannot convince the DM that she is wrong in making it.” The formalization of
those notions lead them to an objective preference that is incomplete and a subjective
preference that completes it. Their objective preference is incomplete because X � Y
only if EP [u(X)] ≥ EP [u(Y )] for all probability measures P in a set of possible
probabilities P . Since the inequality can be reversed for some pair of acts and distinct
probabilities in P , this criterion cannot rank all pairs. The same set of probabilities P
appears in the subjective preference, which is a Gilboa and Schmeidler (1989)’s Max-
imin Expected Utility, and displays ambiguity aversion. On the other hand, ambiguity
aversion does not play a role in Example 3.3. The subjectivity that Example 3.3 rules
out is in the choice of the utility function u. The functional I is considered objective,
because it “was previously agreed upon, based on the data.” The reader should be
warned that subjectivity is not completely ruled out however, since the functional I
itself may contain subjective elements, as we further discuss in Remark 3.6 below.

Having justified the complete separation of tastes and beliefs as a criterion desirable
in some settings, we turn to translate this property into an axiom. First notice that (3)
and (4) hold in general if there exists a strictly increasing function ξ : R → R such
that v = ξ ◦ u. Therefore, we have complete separation of tastes and believes if the
certainty equivalent I : B0(�) → R satisfies

I [ξ ◦ u ◦ f ] = ξ (I [u ◦ f ]) , (6)

for any ξ : R → R that is strictly increasing, and any u : ϒ → R and f ∈ F .
Restricting ξ to be strictly increasing and continuous and considering a larger domain,
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Chambers (2007, 2009) names property (6) Ordinal Covariance. More precisely, a
functional I : B(�) → R satisfies Ordinal Covariance if

I [ξ ◦ h] = ξ (I [h]) ,∀h ∈ B(�). (7)

We cannot use (6) nor (7) because they are properties of the function I , not properties
of the preference �.10 Instead, we introduce a new axiom, that we call “Ordinality”.
To state it, we need the following definition:

Definition 3.5 Afunctionϕ : ϒ → ϒ is increasing if x � y ⇒ ϕ(x) � ϕ(y),∀x, y ∈
ϒ and it is strictly increasing if it is increasing and x � y ⇒ ϕ(x) � ϕ(y),∀x, y ∈ ϒ .

We can now state our main axiom.

Axiom Q4 (Ordinality). For any increasing ϕ : ϒ → ϒ , we have

f � g ⇒ ϕ( f ) � ϕ(g). (8)

Ordinality is the central axiom of our axiomatization of static quantile preferences.
It requires that the preference is ordinal, that is, the only importance for the ranking of
any act is the order of the consequences, not its cardinal value. Ordinality is a variation
of Ordinal Invariance axiom presented in Chambers (2005, section 9).11 For Chambers
(2005),F is the set of real-valued, bounded, �-measurable functions, that is, B(�) in
our notation, and he says that a preference� on this B(�) satisfiesOrdinal Invariance
if for all f , g ∈ B(�) and all strictly increasing and continuous ϕ : R → R,

f � g ⇔ ϕ( f ) � ϕ(g). (9)

There are a number of differences between Ordinal Invariance and Ordinality. First,
for Ordinality, the acts in F may take values in a space of consequences ϒ , which
is not necessarily the reals. The order on ϒ is inherited from the other on F , since
ϒ may be viewed as subset of F (as usual, the elements of ϒ can be identified with
constant acts).

Second, Ordinal Invariance applies to strictly increasing and continuous ϕ : R →
R, while Ordinality applies to increasing ϕ : ϒ → ϒ . The fact that Ordinality
dispenses with continuity of ϕ makes even the implication ⇒ not trivial. In fact, it is
not true in general for any continuous model, as discussed in detail in Sect. 3.3 below.
Since ϕ is not restricted to be strictly increasing, the implication is required in just one
direction. Indeed, the reverse direction would be false for increasing functions. To see
this, consider a constant function ϕ : ϒ → ϒ , which is increasing and makes the right
hand side of (8) hold with indifference, that is, ϕ( f ) ∼ ϕ(g). In this case the reverse
implication ⇐ would be false if g � f . In fact, the equivalence cannot be imposed
even if we requireϕ to be strictly increasing. Ifϕ is strictly increasingwith inverseϕ−1,

10 Chambers (2005, 2007) defined related properties directly on preferences. See discussion below, after
the introduction of Ordinality.
11 See also Chambers (2007, footnote 2, p. 422) for a related condition.
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then we could apply Q4 to ϕ−1 (easily seen to be also strictly increasing), to obtain
f � g ⇔ ϕ( f ) � ϕ(g).12 The problem is that a strictly increasing map ϕ : ϒ → ϒ

may fail to be invertible for a general space ϒ , because of the indifferences. For
instance, consider ϒ = {a, b, c} with a ∼ b � c and ϕ(a) = ϕ(b) = a and ϕ(c) = c.
This ϕ is strictly increasing but not invertible. In sum, by considering increasing maps
andworkingwith the implication in just one direction, Ordinality circumvents all these
difficulties in a succinct form.

It is well known that we need an extra axiom to deal with probabilities in finite
sets, as we are considering here. We follow Chambers (2007) in naming it Betting
Consistency, but it appears in a variety of previous papers dealing with finite sets; see,
for instance, Fishburn (1986, Axiom 4, p. 229).

Axiom Q5 (Betting Consistency). Let {A1, . . . , An} ⊂ � and {B1, . . . , Bn} ⊂ �

be such that
∑n

i=1 1Ai ≥ ∑n
i=1 1Bi . Then, there exists i ∈ {1, . . . ,m} such that

x Ai x � x Bi x , for any x , x ∈ ϒ such that x � x .

We can now state our first main result.

Theorem 1 A binary relation� onF satisfies Axioms Q1–Q5 if and only if there exist
a nonconstant affine function u : ϒ → R, probability p : � → [0, 1] and τ ∈ (0, 1)
such that

f � g ⇐⇒ I [u ◦ f ] ≥ I [u ◦ g],

where I : B0(�, u(ϒ)) → R is given by

I [ξ ] = inf{α : p({s ∈ S : ξ(s) ≥ α}) ≤ τ } = Qp
τ [ξ ]

for any ξ ∈ B0(�, u(ϒ)).

Remark 3.6 As we discuss in Sect. 5, the risk attitude in quantile models is captured
by τ . Therefore, it is associated to the functional I : B0(�, u(ϒ)) → R and not to
the utility function u : ϒ → R. This is why we have emphasized that the separation
is of beliefs and “tastes over consequences.” This also clarifies a comment made at
the end of Remark 3.4, where we warned that the functional I may contain subjective
elements: it includes the parameter τ , associated to the risk attitude. In other words,
the functional includes “taste for risk,” but not “taste over consequences.”

3.2 Axiomatization in the topological setting

We now present an axiomatization of quantile preferences in a topological setting.
This is important for us because it will be used later, in the derivation of the dynamic
quantile preferences. Thus, in this subsection, we assume that ϒ (and therefore, F) is
a connected separable topological space. Recall that F is endowed with the product

12 This equivalence holds for a quantile preference because we focus on simple acts. In the general case,
it is necessary to require extra conditions, as left-continuity; see de Castro and Galvao (2019).
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topology of ϒ S . The role of this assumption is to guarantee the existence of a contin-
uous utility function representing the (continuous) preference �; see Debreu (1964).
In this setting, we modify the continuity assumption as follows:

Axiom Q2’ (Continuity). For any f ∈ F , the sets {g ∈ F : g � f } and {g ∈ F :
f � g} are closed.

In this setting, we do not need Q3 (Weak Certainty Independence), while Ordinality
and Betting Consistency remain the same. We have:

Theorem 2 The preference � satisfies axioms Q1, Q2’, Q4 and Q5 if and only if
there exists a nonconstant continuous utility function u : ϒ → [0, 1], a probability
p : � → [0, 1] and τ ∈ (0, 1) such that U : F → [0, 1] represents �, where

U ( f ) ≡ inf{α : p({s ∈ S : u( f (s)) ≥ α}) ≤ τ }. (10)

The result in Theorem 2 is a building block used in the next section to establish
the axiomatization of the recursive quantile preferences. Notice that the “uniqueness”
of u is asserted only with respect to monotonic transformations, and not only affine
transformations as in the expected utility case. On the other hand, the representation
is equivalent for any strictly increasing transformations of u.

Remark 3.7 The methods proposed in this paper are based on quantiles, which are
deeply related to Value-at-Risk (VaR)—formally, they are the same object—and VaR
is a measure of risk in Artzner et al. (1999)’s terminology (although not a coherent
one). However, the objectives and concepts related to quantile preferences are different
from those of (coherent) risk measures. A purpose of risk measures is to restrict the
set of acceptable choices by a portfolio manager, but it is not intended to guide her
in the specific portfolio selection. VaRs are also commonly used to restrict the set of
acceptable portfolios and the τ ’s usually considered are either 0.05 or 0.01, but our
proposal is to axiomatize the quantile preferences, which could be used to choose the
portfolio directly.

3.3 Ordinality and quantiles

The purpose of this section is to investigate when the axiom of Ordinality Q4 holds for
quantiles in different settings. The necessity part of Theorems 1 and 2 establishes that
Ordinality (Q4) holds for a quantile preference inF . In order to clarify what we mean
by the validity of Ordinality for “different settings,” let us say that a preference � on
a subset F of the set of �-measurable functions f : S → ϒ is a quantile preference
if the following holds:

f � g ⇐⇒ Qp
τ [u( f )] ≥ Qp

τ [u(g)], (11)

where u : ϒ → R, Qp
τ [u( f )] = inf{α : p({s ∈ S : u( f (s)) ≥ α}) ≤ τ } and

(S, �, p) is a probability space. Given (11), a quantile preference satisfies Ordinality
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if and only if for all f , g ∈ F and an increasing ϕ : ϒ → ϒ , the following holds:

Qp
τ [u( f )] ≥ Qp

τ [u(g)] �⇒ Qp
τ [u(ϕ( f ))] ≥ Qp

τ [u(ϕ(g))]. (12)

Interestingly, Ordinality (12) does not hold in all cases, but it does hold in the
most important cases, namely, when the random variables assume only finitely many
values or when their induced distribution is atomless. Example 3.11 below contains a
counterexample for the general case, where we have both a continuous variable and a
discrete one.

To explain those results, we begin with the setting of simple acts in which Theo-
rems 1 and 2 are stated. As we mentioned above, the necessity part of those theorems
establish that Ordinality holds in this setting. Because of its importance for our dis-
cussion, we state this result separately here:

Proposition 3.8 Let (S, �, p) be a probability space and assume that f , g : S → ϒ

are measurable functions assuming a finite number of values. Then, (12) holds.

Proposition 3.9 below shows that Ordinality also holds if the variables are atomless.
We say that f : S → ϒ is atomless (or has no atom) if p ({s ∈ S : f (s) = a}) = 0
for all a ∈ ϒ . We have the following:

Proposition 3.9 Let (S, �, p) be a probability space and assume that f , g : S → ϒ

are measurable functions with no atoms. Then, (12) holds.

Wewill actually prove a slightly stronger result, that completes the characterization
of when (12) holds. For simplicity of notation, we will write Qp

τ [·] as Qτ [·].
Proposition 3.10 Assume that

p ({s∈ S : u( f (s))<Qτ [u( f )]})<τ or p ({s ∈ S : u(g(s))<Qτ [u(g)]})≥τ. (13)

Then, (12) holds.

In other words, (12) can fail only if

p ({s ∈ S : u( f (s)) < Qτ [u( f )]}) ≥ τ > p ({s ∈ S : u(g(s)) < Qτ [u(g)]}) .

Example 3.11 below shows that assumption in Eq. (13) cannot be dispensed with,
that is, (12) may fail if the assumption is false.

Example 3.11 Let S = [0, 1],� the usualBorelσ -algebra and p theLebesguemeasure
on S. Let u(x) = x, ϒ = [0, 1] and consider the following functions:

f (s) = s,∀s ∈ S;

g(s) =

⎧⎪⎪⎨
⎪⎪⎩

0.25, if s ∈ [0, 0.25)
0.5, if s ∈ [0.25, 0.5)
0.75, if s ∈ [0.5, 0.75)
1, if s ∈ [0.75, 1]

; and ϕ(x) =
{
x, if x ∈ [0, 0.5)
1, if x ∈ [0.5, 1] .
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Therefore, f is atomless and g has atoms in {0.25, 0.5, 0.75, 1}, each with 0.25
probability. Moreover, ϕ is increasing. Let τ = 0.5. Then it is easy to see that
Qτ [u( f )] = Qτ [u(g)] = 0.5. On the other hand,

ϕ( f (s)) =
{
s, if s ∈ [0, 0.5)
1, if s ∈ [0.5, 1] ; ϕ(g(s)) =

{
0.25 if s ∈ [0, 0.25)
1 if s ∈ [0.25, 1] .

With this, we obtain

Qτ [u(ϕ( f ))] = inf{α : p({s ∈ S : u(ϕ( f (s))) ≥ α}) ≤ 0.5} = 0.5;
Qτ [u(ϕ(g))] = inf{α : p({s ∈ S : u(ϕ(g(s))) ≥ α}) ≤ 0.5} = 1.

That is, (12) fails: Qτ [u( f )] = Qτ [u(g)] = 0.5 and Qτ [u(ϕ( f ))] = 0.5 < 1 =
Qτ [u(ϕ(g))]. Notice also that this example fails condition (13):

p ({s ∈ S : u( f (s)) < Qτ [u( f )] = 0.5}) = 0.5 = τ

and p ({s ∈ S : u(g(s)) < Qτ [u(g)] = 0.5}) = 0.25 < 0.5 = τ.

OnceProposition 3.10 is established (see the proof in theAppendix), Proposition 3.9
easily follows.

Proof of Proposition 3.9 Since f and g are assumed to be atomless, then

p ({s ∈ S : u(g(s)) < Qτ [u(g)]}) = p ({s ∈ S : u(g(s)) ≤ Qτ [u(g)]}) ≥ τ, (14)

where the last inequality is an known property of quantiles; see, for instance, de
Castro and Galvao (2019, Lemma A.1(iv), p. 1926). Therefore, the assumption in
Proposition 3.10 is satisfied and the conclusion follows from it. ��
Remark 3.12 Under the representation (11), Ordinality is equivalent to (12). Thus, the
above results show that Ordinality may fail for quantiles only in a very special case:
when f is atomless and g has atoms precisely at the probability level τ . Indeed, if
g has no atoms at the probability level τ , (14) above shows that the conditions of
Proposition 3.10 are satisfied and (12) holds. On the other hand, if f and g are simple,
Proposition 3.8 also establishes (12). Therefore, the only case left is, as we said, when
f is atomless and g has atoms precisely at the probability level τ . Since in applications
it is not usual to consider atomless acts together with simple ones, this limitation is
not likely to cause problems.

4 Recursive quantile preferences

Now we provide an axiomatization of the recursive quantile preferences. To do so,
we will apply the results in Bommier et al. (2017). We restrict the analysis to the
particular case of stationary IID Markov.13 The extension of the results to a general

13 The notion of IID was first introduced in Epstein and Schneider (2003a) in the context of ambiguity for
the case of max-min expected utility representation.
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Markov case is left for futurework. The notion of stationary IID relies on the following:
(i) restriction of the analysis to cases where the passing of time has no impact on the
structure of the domain of choice; and (ii) introduction of a set of assumptions implying
that a decision maker who uses, at all dates, the same history independent preference
relation is time-consistent. The setup and notation are taken verbatim from Bommier
et al. (2017).

4.1 Setup and notation

For the axiomatization of the dynamic preferences, we follow the definitions and
assumptions of Bommier et al. (2017). Let S be a finite set representing the states of
the world to be realized in each period.14 Assume that S has at least three elements
and denote by � := 2S the associated algebra of events. The full state space is
� ≡ S∞, with a stateω ∈ � specifying a complete history (s1, s2, . . . ). In each period
t > 0, the individual knows the partial history (s1, . . . , st ). Such knowledge can be
represented by a filtration G = (Gt )t on � where G0 := {∅,�} and, for every t > 0,
Gt := �t × {∅, S}∞. Let C = [c, c̄] ⊂ R++ be the set of all possible consumption
levels. A consumption plan, or an act, is a C-valued, G-adapted stochastic process,
that is, a sequence h = (h0, h1, . . . ) such that ht : � → C is Gt -measurable for every
t . The set of all consumption plans is denoted by H and endowed with the topology
of pointwise convergence.

Weconsider a binary relation�onH and introduce a set of axioms. Somenotation is
required first. Given an act h ∈ H and stateω ∈ �, let h(ω) ∈ C∞ be the deterministic
consumption stream induced by h in state ω ∈ �, that is, h(ω) = (h0, h1(ω), . . . ).
Moreover, for any act h ∈ H and any s ∈ S, we define the conditional act hs ∈ H by

∀ω = (s1, s2, . . . ) ∈ � : hs(s1, s2, . . . ) = h(s, s2, . . . ) = (h0, h1(s, s2, . . . ), . . . ) .

The act hs is obtained from h when knowing that the first component of the state
of the world is equal to s ∈ S. Notice that hs(s1, s2, . . . ) is independent of s1. Given
h = (h0, h1, h2, . . . ) ∈ H, let h1 be defined by

∀ω = (s1, s2, . . . ) ∈ � : h1(s1, s2, . . . ) = (h1(s1, s2, . . . ), h2(s1, s2, . . . ) . . . ) .

The set of those h1 can be identified with HS . We can construct the continuation
act hs,1 ∈ H from the conditional act hs by removing the first-period consumption.
Formally, for any act h = (h0, h1, h2, . . . ) ∈ H and any s ∈ S, the continuation act
hs,1 is given by

∀ω = (s1, s2, . . . ) ∈ � : hs,1(s1, s2, . . . ) = (h1(s, s2, . . . ), h2(s, s2, . . . ), . . . ) .

(15)

14 A finite space S is also used in Maccheroni et al. (2006b).
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The continuation act hs,1 can be viewed as the consumption plan implied by h
starting at date 1 (ignoring consumption at date t = 0) and where the information
revealed at the beginning of date 1 (i.e., s1) is equal to s.

Last, for any c ∈ C and h ∈ H, we define the concatenated act (c, h) ∈ H by

(c, h) : ω = (s1, s2, . . . ) ∈ � �→ (c, h)(ω) = (c, h(s2, . . . )) ∈ C∞.

The notions of conditional, continuation, and concatenated acts are related to each
other. In particular, the conditional act is the concatenation of first-period consumption
and the continuation act. Formally, for h = (h0, h1, . . . ) ∈ H and s ∈ S, we have hs =
(h0, hs,1). Moreover, any concatenated act (c, h) has continuation h. In mathematical
terms, for any c ∈ C , h ∈ H, and s ∈ S, we have (c, h)s,1 = h.

4.2 Axioms

We borrow the axioms below from Bommier et al. (2017, Appendix A). They are also
related to those in Chew and Epstein (1990).

Axiom D1 (Weak Order).
The binary relation � is complete and transitive on H.
Axiom D2 (Continuity).
For all h ∈ H, the sets {ĥ ∈ H | ĥ � h} and {ĥ ∈ H | h � ĥ} are closed inH.
Axiom D3 (Recursivity). For all acts h = (h0, h1, . . . ) and ĥ = (ĥ0, ĥ1, . . . ) in
H with h0 = ĥ0,

(
∀s ∈ S, hs � ĥs

)
�⇒ h � ĥ.

If, in addition, one of the former rankings is strict, then the latter ranking is strict.
Axiom D4 (History Independence).
For all acts h = (h0, h1, . . . ) and ĥ = (h0, ĥ1, . . . ) inH, and ĥ0 ∈ C ,

(h0, h1, . . . ) � (h0, ĥ1, . . . ) ⇐⇒ (ĥ0, h1, . . . ) � (ĥ0, ĥ1, . . . ).

Axiom D5 (Stationarity). For all c ∈ C and h, ĥ ∈ H, we have (c, h) �
(c, ĥ) ⇐⇒ h � ĥ.
Axiom D6 (Monotonicity for Deterministic Prospects). For all c∞, ĉ∞ ∈ C∞, if
c∞ ≥ ĉ∞, then c∞ � ĉ∞. The latter ranking is strict whenever c∞

� ĉ∞.
Axiom D7 (Monotonicity).
For any h and ĥ inH,

(
h(ω) � ĥ(ω) for all ω ∈ �

)
�⇒ h � ĥ.

As discussed in Bommier et al. (2017), axioms D1 and D2 are standard. Axiom
D3, recursivity, ensures that ex-ante choices remain optimal when they are evalu-
ated ex-post. This axiom has appeared in the literature, see, e.g., Chew and Epstein
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(1990). Axioms D4 and D5, history independence and stationarity, respectively, are
complementary assumptions. These axioms are related to argument of Koopmans
(1960) that “the passage of time does not have an effect on preferences.” Axiom D6,
monotonicity for deterministic prospects, requires that, in the absence of uncertainty,
higher consumption is always better. Finally, axiom D7, monotonicity, is a consis-
tency requirement between preferences over temporal lotteries and preferences over
deterministic consumption streams. D7 stipulates that a temporal lottery is preferred
whenever it provides a better consumption stream in every state of the world. Mono-
tonicity also appears in Epstein and Schneider (2003b), Maccheroni et al. (2006b),
and Kochov (2015).

4.3 Characterization of monotone recursive preferences

A function I : B0(�) → R+ is a certainty equivalent if it is continuous, strictly
increasing and satisfies I (x) = x for any x ∈ R+, where we see real numbers as
constant functions in B0(�). A certainty equivalent I : B0(�) → R+ is translation-
invariant if I (x + f ) = x + I ( f ) for any x ∈ R+ and f ∈ B0(�) and it is scale-
invariant if for all λ ∈ R+ and f ∈ B0(�), I (λ f ) = λI ( f ). Given a function
V : H → R and an act h ∈ H, we let V ◦ h1 denote the function s �→ V (hs,1). If V
is a utility function, then V ◦ h1 is the state-contingent profile of continuation utilities
induced by the act h in period 1. A time aggregator is a function W : C × [0, 1] →
[0, 1].

We say that � admits a recursive representation (V ,W , I ) if

h � h′ ⇐⇒ V (h) � V (h′), (16)

whereV : H → [0, 1],W is a time aggregator and I is a certainty equivalent satisfying

V (h) = W (h0, I (V ◦ h1)), where V ◦ h1 : s ∈ S �→ V (hs,1). (17)

Bommier et al. (2017) show in their Lemma 1 that a preference on a dynamic setting
satisfying the axioms of weak order, continuity, recursivity, history independence and
stationarity (D1–D5) can be represented by a utility function V that obeys the recursive
equation in (17). The next step is to specialize this equation further. Bommier et al.
(2017)’s Proposition 4 is the following:

Proposition 4.1 (Bommier–Kochov–Le Grand) A binary relation � on H satisfies
axioms D1-D7 if and only if it admits a recursive representation (V ,W , I ) such that
either:

1. I is translation-invariant and W (c, x) = u(c) + βx, where β ∈ (0, 1) and u :
C → [0, 1] is a continuous, strictly increasing function such that u(c) = 0 and
u(c̄) = 1 − β, or

2. I is translation-invariant and scale-invariant, and W (c, x) = u(c)+b(c)x, where
u, b : C → [0, 1] are continuous functions such that b(C) ⊂ (0, 1), the functions
u and u + b are strictly increasing, and u(c) = 0 and u(c̄) = 1 − b(c̄).
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Proposition 4.1 shows that if the preference satisfies axioms D1-D7, then it has
a recursive representation (V ,W , I ) where W has an additively separable structure,
that is, W (c, x) = u(c) + βx or W (c, x) = u(c) + b(c)x .15 The first case implies, in
particular, that the decision maker evaluates riskless consumer streams according to
the standard exponential discounting utility

∑∞
t=0 β t u(ct ).

4.4 Axiomatization of recursive quantile preferences

Given these results, we now adapt the static quantile axioms to a dynamic setting and
combine them with all of Bommier et al. (2017)’s axioms. We wish to show that the
certainty equivalent I[·] above is a quantile operator and that W (c, x) = u(c) + βx ,
thus obtaining the recursive equation

V (h) = u(h0) + βQp
τ [V (h1)].

Let � = S∞, C and H be as in Sect. 4.1. Consider the following axioms:

AxiomA1 (Time Separability for Deterministic Prospects). For all c∞, ĉ∞ ∈ C∞,
c, c′, d, d ′ ∈ C , we have:

(c, d, c∞) � (c′, d ′, c∞) ⇔ (c, d, ĉ∞) � (c′, d ′, ĉ∞).

Axiom A2 (Ordinality).
For any c0 ∈ C , functions f , g : S → C , h = (h0, h1, h2, . . .) ∈ H, and
increasing ϕ : C → C ,

(c0, f (·), h2(·), . . .) � (c0, g(·), h2(·), . . .)
⇒ (c0, ϕ( f (·)), h2(·), . . .) � (c0, ϕ(g(·)), h2(·), . . .).

Axiom A3 (Betting Consistency). Let {A1, . . . , An} ⊂ 2S and {B1, . . . , Bn} ⊂ 2S

be such that
∑n

i=1 1Ai ≥ ∑n
i=1 1Bi . Then, there exists i ∈ {1, . . . ,m} such that

cAic′ � cBic′, for any c = (c, c, . . .) and c′ = (c′, c′, . . .) such that c � c′.

Axiom A1 is just Koopmans (1972)’s Postulate 3”. Note that this is required only
for deterministic prospects. This axiom allows us to show that in Proposition 4.1,
b(c) = β ∈ (0, 1), that is, the discounting factor is a constant and does not depend on
the consumption.

Axioms A2 and A3 are adaptations of axioms Q4 and Q5, respectively, from the
static to the recursive case. They allow us to show that the certainty equivalent I [·] in
Proposition 4.1 is in fact a quantile.

We are now able to state and prove our axiomatization result:

Theorem 3 A binary relation � on H satisfies axioms D1-D7 and A1-A3 if and only
if there exist β, τ ∈ (0, 1), a continuous, strictly increasing function u : C → [0, 1]
15 Note that D6 has a strict monotonicity requirement built into it. Indeed, a time aggregator likeW (c, x) =
min{c, x} would fail to satisfy it.
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such that u(c) = 0 and u(c̄) = 1 − β, and a probability p : � → [0, 1] on � = 2S

such that� admits a recursive representation (V ,W , I ), where W (c, x) = u(c)+βx
and I : B0(�) → R+ is given by I (b) = Qp

τ [b], for any b ∈ B0(�). That is, V
satisfying the recursive equation

V (h) = u(h0) + βQp
τ [V (h1)], (18)

represents �, where h = (h0, h1, . . .) ∈ H and h1 = (h1, h2, . . .) ∈ HS.

It is important to discuss some aspects of Theorem 3 and the representation it
delivers. Ordinality and Betting Consistency, that come fromA2 and A3, respectively,
imply that the certainty equivalent, I [·] in (17) is of the quantile form. Ordinality,
which is the central axiom for this result, essentially requires that only the order of
the consequences (not its cardinal index) matters for the rank of uncertain prospects.
This also allows to separate beliefs and tastes, as commented above in Sect. 3, in the
discussion after axiom Q4. It remains only to restrict b(c) in Proposition 4.1 to be
constant, which is obtained with the time separability of deterministic prospects (A1).
In sum, the additive separability of the recursive function W and the Ordinality of the
certainty equivalent I [·] are characteristics that jointly lead to our model.

Using the quantile recursive equation (18) as a starting point, de Castro and Galvao
(2019) develop a dynamic model of rational behavior under uncertainty, in which the
agent maximizes the stream of the future τ -quantile utilities, for τ ∈ (0, 1). That is,
the agent has a quantile preference instead of the standard expected utility. Because of
recursivity, the obtained preferences are dynamically consistent. Although quantiles
do not share some of the helpful properties of expectations, such as linearity and the
law of iterated expectations, de Castro and Galvao (2019) establish all the standard
results in dynamic models. Namely, they show that the corresponding dynamic prob-
lem yields a value function, via a fixed point argument, establish its concavity and
differentiability and show that the principle of optimality holds. Additionally, they
derive the corresponding Euler equation.

5 Risk attitude in quantile preferences

In this section, we discuss the risk attitude in quantile preferences. de Castro and
Galvao (2019) also discuss the intertemporal attitudes of this preferences and show
how they allow the separation of the risk attitude and the elasticity of intertemporal
substitution (EIS).

5.1 Risk attitude in the static quantile model

In order to discuss the risk attitude under quantile preferences, let us introduce the
concept of quantile-preserving spreads, which is related to the familiar Rothschild and
Stiglitz (1970)’s mean-preserving spreads and, as this last one, captures the notion of
“added noise.” That is, the intuition that Y is equal to X plus noise can be formalized
either as Y is a mean-preserving spread of X or that Y is a quantile-preserving spread.
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Fig. 1 Y is a
τ̄ -quantile-preserving spread of
X

The choice of the formalization is a subjective matter. In order to discuss this, let us
follow Mendelson (1987) and define:

Definition 5.1 (Quantile-preserving spread)We say that Y is a τ -quantile-preserving
spread of X for q ∈ R, if Qτ [Y ] = Qτ [X ] = q and the following holds:

(i) t < q �⇒ FY (t) ≥ FX (t);
(ii) t > q �⇒ FY (t) ≤ FX (t).

Y is a quantile-preserving spread of X if it is a τ̄ -quantile-preserving spread of X for
FX (q) = FY (q) = τ̄ , with τ̄ ∈ (0, 1).

Figure 1 illustrates the CDFs of random variables Y and X when Y is a τ̄ -quantile-
preserving spread of X . Mendelson (1987) formalizes other four conditions and show
that they are all equivalent to the above definition; see this paper for further discussion
and intuition. Notice that this definition captures the notion that Y is riskier than X ,
since it puts weight in more extreme values than X . Manski (1988) uses a different
terminology for the same concept referring to the property of “single crossing from
below”: FX crosses FY from below when Y is a quantile-preserving spread of X .

Note that if Qτ [Y ] = q and X is equal to q with probability 1, then Y is a τ -
quantile-preserving spread of X . In other words, any risky asset Y with τ -quantile q
is a quantile-preserving spread of any risk-free asset X with value q.

Figure 1 suggests that the choice of a τ -quantile maximizer or τ -decision maker (τ -
DM) depends onwhether τ is below or above the quantile τ̄ where the twoCDFs cross.
That is, when τ < τ̄ as in Fig. 1, a τ -DM prefers the safer asset X : Qτ [X ] ≥ Qτ [Y ].
On the other hand, if τ ′ > τ̄ , a τ -DM prefers the riskier asset Y : Qτ [X ] ≤ Qτ [Y ].
The following result formalizes this intuition.

Proposition 5.2 (Manski) Let Y be a τ̄ -quantile-preserving spread of X for τ̄ ∈ (0, 1).
Then:

(i) τ ≤ τ̄ �⇒ Qτ [X ] ≥ Qτ [Y ], that is, a τ -DM prefers the less risky asset X if τ

is low;
(ii) τ ≥ τ̄ �⇒ Qτ [X ] ≤ Qτ [Y ], that is, a τ -DM prefers the riskier asset Y if τ is

high.

We turn now to the problem of comparing the risk attitude of τ -DM with different
τ . For this, consider the following definition, due to Epstein (1999, equation (2.1), p.
583):

Definition 5.3 (Epstein 1999) Preference �1 is more risk averse than preference �2

if for all x ∈ ϒ , and f ∈ F , x �2 f ⇒ x �1 f and x �2 f ⇒ x �1 f .
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The intuition for this definition is clear given that constant acts do not present risk or
are perfectly certain: if�2 prefers safety, themore risk averse�1 would prefer too.We
can construct a similar characterization of risk in the quantile setting that allows one to
rank preferences. Let �τ represent a τ -quantile preference. The following formalizes
the result.

Proposition 5.4 The following statements are equivalent:

1. τ1 < τ2;
2. �τ1 is more risk averse than �τ2 ;
3. If Y is a quantile-preserving spread of X and a τ2-DM prefers X to Y , then so

does a τ1-DM.16

4. If Y is a quantile-preserving spread of X and a τ1-DM prefers Y to X, then so
does a τ2-DM.

This result shows that �τ1 is more risk averse than �τ2 if and only if τ1 < τ2. This
property implies that an agent with quantile given by τ1 is more risk preferring than
another agent with quantile given by τ2 if τ1 > τ2, independently of the functional
form of the utility function. Thus, a decision maker that maximizes a lower quantile
is more risk averse than one who maximizes a higher quantile. In other words, the
risk attitude can be related to the quantile rather than to the concavity of the utility
function. Moreover, Proposition 5.4 shows that in the QU framework individuals’ risk
attitude is related to the quantile rather than to the concavity of the utility function.

5.2 Risk attitude in the dynamic quantile model

Now we discuss the notion of risk attitude in the dynamic quantile model. For this
discussion, consider preferences �i , i ∈ {1, 2}, satisfying axioms D1–D7 and A1, so
that they are represented by V i satisfying the following recursive equation:

V i (h) = u(h0) + β I i [V i (h1)].

As Epstein and Zin (1989), we adapt Definition 5.3 for the dynamic case as follows:
we say that �1 is more uncertainty averse than �2 if, for all c∞ ∈ C∞ and h ∈ H,

c∞ �2 h �⇒ c∞ �1 h. (19)

We have the following:

Proposition 5.5 �1 is more risk averse than �2 if and only if I 1[·] ≤ I 2[·].
Specializing the above result to the quantile case, we conclude that �1 is more risk

averse than �2 if and only if I 1(·) = Qτ1 [·] ≤ Qτ2 [·] = I 2(·) which is equivalent
to τ1 ≤ τ2. This is exactly the notion obtained in Proposition 5.4 above. Hence, as
in Manski (1988) and Rostek (2010), the dynamic quantile model admits a notion of

16 Notice that we are not specifying what is the quantile τ̄ for which Y is a τ̄ -quantile-preserving spread
of X . The same observation is valid for item 4.
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comparative risk attitude, where τ captures a measure of risk attitude, but agents are
not characterized as risk-averse, risk-neutral, or risk-seeking.Moreover, this definition
of risk allows for the risk attitudes to be disentangled from the degree of intertemporal
substitutability, as we discuss next.

In summary, the single dimensional parameter τ ∈ (0, 1) captures the risk attitude
in quantile models. This is in contrast to the risk attitude in expected utility model,
which is defined by the entire utility function, which is an object that usually belongs
to infinite dimensional spaces. This remains true if one tries to characterize the risk
attitude through the coefficient of relative or absolute risk aversion, which are also
functions. Only when we further particularize the expected utility models to constant
coefficients (CRRA and CARA), we are able to obtain a single dimensional parameter
pinning down the risk attitude. Interestingly, this is what is used in practice. In quantile
models this particularization is not needed, since the model is already unidimensional
and, thus, simpler.

6 Conclusion and open questions

This paper axiomatizes static and dynamic quantile preferences. A central objective
is to establish foundations for the dynamic preference. There are previous axiom-
atizations for the static case, such as Chambers (2009) and Rostek (2010), but the
methods used to derive the dynamic representation preclude us from using those pre-
vious results. We cannot use Chambers (2009) because he works in a setting of risk,
instead of uncertainty, while Rostek (2010) requires an infinite state space, which is
not convenient for the axiomatization of the dynamic preferences.

We first axiomatize quantile preferences for the static case with finite state space.
The main axioms that provide the quantile preferences representation in the static
case are Monotonicity, Ordinality, and Betting Consistency. Second, we develop an
axiomatization of the recursive quantile preferences. For this, we apply the results in
Bommier et al. (2017) and extend the Monotonicity, Ordinality, and Betting Consis-
tency axioms from the static to the dynamic context. The dynamic preferences induce
an additively separable quantile model with standard discounting, that is, the recur-
sive equation is characterized by the sum of the current period utility function and the
discounted value of the certainty equivalent, which is a quantile function. These pref-
erences are time consistent and have a simple quantile recursive representation, which
gives the model the analytical tractability needed in several fields in financial and eco-
nomic applications. Finally, we study the notion of risk attitude in both the static and
recursive quantile models. In quantile models, the risk attitude is completely captured
by the quantile τ , a single-dimensional parameter. This is simpler than in expected
utility models, where in general the risk attitude is determined by a function.

It is left open the extension of the dynamic preference axiomatization to infinite
state spaces, which would probably also require to extend Bommier et al. (2017)’s
results. Another direction to explore is whether there are preferences distinct from
quantile preferences that obey Ordinality (Q4) and perhaps some variations of some
of the other axioms (Q1, Q2, Q3 and Q5).
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A Appendix

We need to introduce some notation. If x ∼ y for all x, y ∈ ϒ , this would contradict
Q1. Therefore, from now on, we assume that there exists x and x ∈ ϒ , such that
x � x . For the rest of the proof, let this x and x be fixed. We begin with the following
auxiliary result:

Lemma A.1 Assume Q1, Q4 and Q2 in the Anscombe–Aumann setting or Q2’in the
topological setting. For any x, y ∈ ϒ and any E ⊂ S, we have xEy ∼ x or xEy ∼ y.

Proof If x ∼ y, there is nothing to prove, since this and monotonicity would imply
xEy ∼ x ∼ y. Thus, let us assume, without loss of generality, that x � y. By
monotonicity, x � xEy � y. Assume that xEy � y. We claim that there exists z ∈ ϒ

such that z ∼ xEy.
To see the validity of the claim, consider first the Anscombe–Aummann setting.

Consider the sets A ≡ {α ∈ [0, 1] : αx + (1 − α)y � xEy} and B ≡ {α ∈ [0, 1] :
xEy � αx + (1 − α)y}. Then, 1 ∈ A, 0 ∈ B, A and B are closed by continuity
(Q2) and A ∪ B = [0, 1] by completeness. By the connectedness of [0, 1], there
exists α ∈ A ∩ B. Since ϒ is convex, z = αx + (1 − α)y ∈ ϒ and z ∼ xEy.
In the topological setting, consider the sets A ≡ { f ∈ F : f � xEy} ∩ ϒ and
B ≡ { f ∈ F : xEy � f } ∩ ϒ , where ϒ is seen as a subset of F , as usual. Since
x ∈ A and y ∈ B, A ∪ B = ϒ , which is also connected, the claim follows.

Let z ∈ ϒ be such that z ∼ xEy as above. Define ϕ : ϒ → ϒ by:

ϕ(w) =
{
x, if w � y
y, if w � y

Clearly, ϕ is increasing. Since z ∼ xEy � y, ϕ(z) = x . Since xEy ∼ z, by Ordinality
we have xEy = ϕ(xEy) ∼ ϕ(z) = x . This concludes the proof. ��

We will prove first Theorem 2, which is inspired in Chambers (2007). The proof of
Theorem 1 will be discussed in the sequel. A collection of sets E ⊂ � is a downset if
A ∈ E and B ⊂ A and B ∈ � implies that B ∈ E .
Proposition A.2 If � satisfies axioms Q1, Q2’ and Q4, there exists u : ϒ → R and a
unique downset E ⊂ � such that ∅ ∈ E and S /∈ E for which

U ( f ) = inf{α : {s ∈ S : u( f (s)) ≥ α} ∈ E}.

Proof FromQ1 andQ2’, there exists a continuous functionU : F → R that represents
�. Since we see ϒ as a subset of F , we can define u : ϒ → R by u(x) = U (x).
Without loss of generality, we may assume that u(x) = 1 and u(x) = 0. For notation
simplicity, in this proof only we denote by 1E the act that is equal to x if s ∈ E and
is equal to x if s /∈ E . By Lemma A.1, we have U (1E ) ∈ {0, 1} for all E ⊂ S.

Let us define E as the set of those E ∈ � such that U (1E ) = 0. It is easy to see
that this defines a downset: if B ⊂ E , B ∈ �, E ∈ E then 1E � 1B by monotonicity.
Therefore, by Lemma A.1, 0 = U (1E ) ≥ U (1B) ∈ {0, 1}, which implies U (1B) =
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0 ⇒ B ∈ E . Moreover, S /∈ E since x = xSx and, therefore, U (1S) = u(x) = 1.
Analogously, ∅ ∈ E .

We will show that for all E ∈ �, U (1E ) = inf{α ∈ [0, 1] : {s ∈ S : u(1E (s)) ≥
α} ∈ E}. Consider first the case E ∈ E . For all α ∈ (0, 1), {s ∈ S : u(1E (s)) ≥ α} =
E , so that {s ∈ S : u(1E (s)) ≥ α} ∈ E . Therefore, inf{α : {s ∈ S : u(1E (s)) ≥ α} ∈
E} ≤ 0. However, for all α < 0, {s ∈ S : 1E (s) ≥ α} = S /∈ E . Hence, we may
conclude that inf{α : {s ∈ S : u(1E (s)) ≥ α} ∈ E} = 0, so that U (1E ) = inf{α :
{s ∈ S : u(1E (s)) ≥ α} ∈ E}.

Suppose now that E /∈ E . Then for all α > 1, {s ∈ S : u(1E (s)) ≥ α} = ∅, so that
inf{α : {s ∈ S : u(1E (s)) ≥ α} ∈ E} ≤ 1. But for α ∈ (0, 1), {s ∈ S : u(1E (s)) ≥
α} = E , so that {s ∈ S : u(1E (s)) ≥ α} /∈ E . Hence, inf{α : {s ∈ S : u(1E (s)) ≥
α} ∈ E} = 1. Therefore, U (1E ) = inf{α : {s ∈ S : u(1E (s)) ≥ α} ∈ E}. This also
shows that E is the unique downset that can satisfy (10) for acts 1E . Moreover, for any
act xEy, with x � y, we have xEy = ϕ(1E ) for some increasing ϕ. Thus, Lemma
A.1 and Ordinality imply that

U (xEy) = u(x), i f E /∈ E and U (xEy) = u(y) i f E ∈ E . (20)

Next, we extend the result to all functions in F . Let f ∈ F be arbitrary, and
set α∗( f ) = inf{α : {s ∈ S : u( f (s)) ≥ α} ∈ E}. We want to conclude that
U ( f ) ≤ α∗( f ). Let ε > 0. Then {s ∈ S : u( f (s)) ≥ α∗( f ) + ε} ∈ E by definition of
α∗( f ). Let gε ∈ F be defined by xEy, where E = {s ∈ S : u( f (s)) ≥ α∗( f )+ε}, and
x, y ∈ ϒ are any consequences such that x � f (s),∀s ∈ E and y � f (s),∀s /∈ E ,
so that u(y) ≤ α∗( f ) + ε. These x and y exist since S is finite. Thus, gε(s) �
f (s),∀s ∈ S, which implies, by monotonicity, U ( f ) ≤ U (gε). By Lemma A.1 and
(20), U (gε) = u(y) ≤ α∗( f ) + ε. Since ε is arbitrary, U ( f ) ≤ α∗( f ).

Now we wish to conclude that U ( f ) ≥ α∗( f ).
Let ε > 0. Then {s ∈ S : u( f (s)) ≥ α∗( f ) − ε} /∈ E by definition of α∗( f ).

Let hε ∈ F be the act xEy where E = {s ∈ S : u( f (s)) ≥ α∗( f ) − ε}, and
x, y ∈ ϒ are any consequences such that f (s) � x,∀s ∈ E , f (s) � y,∀s /∈ E
and u(x) ≥ α∗( f ) − ε. This implies that f (s) � hε(s),∀s ∈ S and U ( f ) ≥ U (hε).
Moreover, {s ∈ S : u( f (s)) ≥ α∗( f )− ε} /∈ E . By (20),U (hε) = u(x) ≥ α∗( f )− ε.
Thus, U ( f ) ≥ α∗( f ) − ε. As ε is arbitrary, U ( f ) ≥ α∗( f ). Therefore U ( f ) =
inf{α : {s ∈ S : u( f (s)) ≥ α} ∈ E}. ��
Proof of Sufficiency in Theorem 2 This proof adapts the argument of Chambers (2007,
Theorem 2) to exclude the case τ = 0.17 We reproduce the whole argument here
for completeness and readers’ convenience. Let U : F → R and E be respectively
the utility function and the downset shown to exist by Proposition A.2. Let S =
{s1, . . . , sn} and for any E ⊂ S, let ūE denote the vector in {0, 1}n such that ūE

i = 1
if and only if si ∈ E .

We want to show that there exists a probability measure represented by a vector
p ∈ [0, 1]n , satisfying∑n

i=1 pi = 1, and a number τ ∈ (0, 1) such that E = {E ∈ � :
p(E) ≤ τ } = {E ∈ � : p · ūE ≤ τ }. For this, we claim that it is sufficient to show

17 His proof quotes Rockafellar (1970, Theorem 22.2) that does not deliver the conclusion needed. We
provide another reference in the proof below and spell out all details of the argument.
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that there exists (p, τ ) ∈ R
n+1 solution of the following system of linear inequalities:

(ūE ,−1) · (p, τ ) > 0,∀E /∈ E; (21)

(−ūE , 1) · (p, τ ) ≥ 0,∀E ∈ E; (22)

(ū{s}, 0) · (p, τ ) ≥ 0,∀s ∈ S. (23)

To see the claim, assume that there exists ( p̃, τ̃ ) ∈ R
n+1+ satisfying (21)–(23). By

Proposition A.2, we know that ∅ ∈ E and S /∈ E . Therefore, (21) and (22) imply that:

0 = p̃ · ū∅ ≤ τ̃ < p̃ · ūS .

By (23), we know that p̃i ≥ 0 for all i = 1, . . . , n. Therefore, we can define (p, τ ) ≡
1

p̃·ūS ( p̃, τ̃ ) and observe that (p, τ ) ∈ [0, 1]n+1 is such that τ < p · ūS = 1, that is, p
is a probability measure, τ ∈ [0, 1) and E = {E ∈ � : p(E) ≤ τ }, because of (21)
and (22). It remains to show that we can choose τ > 0. Indeed, if τ = 0, let S0 ≡ {s ∈
S : p({s}) = 0} and fix ŝ ∈ S\S0 such that p({ŝ}) = min{p({s}) : s ∈ S\S0} > 0.
Let n0 ≡ |S0| and ε ≡ p({ŝ}). Define τ̂ = ε

2 and for each s ∈ S,

p̂({s}) =
⎧⎨
⎩

p({s}), i f s /∈ S0 ∪ {ŝ}
2ε
3 , i f s = ŝ
ε

3n0
, i f s ∈ S0

Then, p̂ is a probability, τ̂ ∈ (0, 1) and E = {E ∈ � : p(E) ≤ τ } = {E ∈ � :
p̂(E) ≤ τ̂ }.

Therefore, the sufficiency of Theorem 2 is established if we show that the system of
inequalities (21)–(23) has a solution (p, τ ). For this, we use a theoremof the alternative
for matrices with rational entries; see for instance Fishburn (1986, Lemma 1, p. 234).
We state the theorem here for readers’ convenience. ��

Theorem 4 Let ai ∈ R
N have rational components for i = 1, . . . ,m, and let k ∈

{1, . . . ,m}. Then one and only one of the following alternatives holds:

(a) There exists a vector x ∈ R
N such that

ai · x > 0, for i = 1, . . . , k

ai · x ≥ 0, for i = k + 1, . . . ,m

(b) There exist nonnegative integers r1, . . . , rm such that ri > 0 for at least one
i ∈ {1, . . . , k} and

m∑
i=1

ri a
i
j = 0 for j = 1, . . . , N .
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Suppose, for a contradiction, that the system of inequalities (21)–(23) does not have
a solution x = (p, τ ) ∈ R

n+1. Let N ≡ n + 1, m ≡ n + 2n and k ≡ |Ec| = 2n − |E |.
Enumerate the subsets of S as E1, . . . , E2n in such a way that the first k sets are not
members of E , that is, Ei ∈ E ⇔ i > k. Define ai as follows:

ai ≡
⎧⎨
⎩

(ūEi ,−1), if i = 1, . . . , k;
(−ūEi , 1), if i = k + 1, . . . ,m − n;
(ū{si−m+n}, 0), if i = m − n + 1, . . . ,m.

Note that all ai ’s have integer components. By Theorem 4, we conclude that there
exist nonnegative integers r1, . . . , rm such that ri > 0 for at least one i ∈ {1, . . . , k}
and

m∑
i=1

ri a
i
j = 0 for j = 1, . . . , N . (24)

Taking j = N = n + 1 above, we conclude that

−
k∑

i=1

ri +
m−n∑
i=k+1

ri = 0 ⇔ r ≡
k∑

i=1

ri =
m−n∑
i=k+1

ri . (25)

Since ri > 0 for at least one i ∈ {1, . . . , k}, we have r > 0. For each j ∈ {1, . . . , n},
define the sets N j ≡ {� ∈ {1, . . . , k} : s j ∈ E�} and Mj ≡ {� ∈ {k + 1, . . . ,m − n} :
s j ∈ E�}. Thus, for j = 1, . . . , n in (24), we obtain:

r j+m−n +
∑
�∈N j

r� =
∑
�∈Mj

r� ⇒
∑
�∈N j

r� ≤
∑
�∈Mj

r�. (26)

Now, we will define two lists of sets At , Bt ⊂ S, both of the same length r ≥ 1. We
define the sets A1, . . . , Ark+1 to be all equal to Ek+1; the sets Ark+1+1, . . . , Ark+1+rk+2

to be all equal to Ek+2, and we continue in this way until we have defined all r =∑m−n
i=k+1 ri of the At sets. Analogously, the sets B1, . . . , Br1 are all equal to E1; the

sets Br1+1, . . . , Br1+r2 are equal to E2, and we continue in this fashion, until we
have defined all r = ∑k

i=1 ri of the Bt sets. Observe that At ∈ E and Bt /∈ E for
all t ∈ {1, . . . , r}. By the Proposition A.2, U (1At ) = 0 and U (1Bt ) = 1, that is,
x Bt x � x At x , ∀t ∈ {1, . . . , r}. Now, observe that for each s j ∈ S, by (26),

r∑
t=1

1At (s j ) =
∑
�∈Mj

r� ≥
∑
�∈N j

r� =
r∑

t=1

1Bt (s j ).

Therefore, we obtain a contradiction of Betting Consistency (Q5). ��
For the proof necessity in Theorem 2, it is convenient to introduce some notation.

For any f ∈ F , we denote the image of f byϒ f , that is,ϒ f ≡ f (S) = {x f
1 , . . . , x f

n }.
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Fig. 2 c.d.f. of u( f ) and quantile Qp
τ [u( f )] = u(x f

i )

Without loss of generality, we may assume u(x f
1 ) < · · · < u(x f

n ). Let E f
i ≡ {s ∈ S :

f (s) = x f
i } and P f

i ≡ ∑i
j=1 p(E

f
j ). This is illustrated in Fig. 2 below, omitting the

superscript in P f
i . With this convention, we have:

U ( f ) = Qp
τ [u( f )] = u(x f

i ), if τ ∈ (P f
i−1, P

f
i ]. (27)

As part of the proof the necessity of Theorem 2, we need to establish that Q4 holds
for the quantile representation. This was separately stated as Proposition 3.8. Thus,
we first prove it.

Proof of Proposition 3.8 Consider f , g ∈ F and an increasing ϕ : ϒ → ϒ . We want
to show that

Qp
τ [u( f )] ≥ Qp

τ [u(g)] �⇒ Qp
τ [u(ϕ( f ))] ≥ Qp

τ [u(ϕ(g))].

As above, let ϒ f ≡ f (S) = {x f
1 , . . . , x f

n } and ϒg ≡ g(S) = {xg1 , . . . , xgm},
with u(x f

1 ) < · · · < u(x f
n ) and u(xg1 ) < · · · < u(xgn ). Let U ( f ) = u(x f

i ) ⇔
τ ∈ (P f

i−1, P
f
i ] and U (g) = u(xgj ) ⇔ τ ∈ (Pg

j−1, P
g
j ]. We assume that

Qp
τ [u( f )] ≥ Qp

τ [u(g)], that is, u(x f
i ) ≥ u(xgj ). Of course Qp

τ [u(ϕ( f ))] ∈
{u(ϕ(x f

1 )), . . . , u(ϕ(x f
i )), . . . , u(ϕ(x f

n ))} and u(ϕ(x f
1 )) ≤ · · · ≤ u(ϕ(x f

n )). Equali-
tiesmay occur because ϕ is only increasing. Such equalitiesmay change the index of x·
that defines the quantiles. However, we can see that if Qp

τ [u(ϕ( f ))] = u(ϕ(x f
k )) then

u(ϕ(x f
k )) = u(ϕ(x f

k+1)) = · · · = u(ϕ(x f
i )). Similarly, Qp

τ [u(ϕ(g))] = u(ϕ(xg� ))

implies u(ϕ(xg� )) = u(ϕ(xg�+1)) = · · · = u(ϕ(xgj )). Since u(xgj ) ≤ u(x f
i ),

u(ϕ(xgj )) ≤ u(ϕ(x f
i )). Therefore, u(ϕ(xg� )) ≤ u(ϕ(x f

k )). Thus, Qp
τ [u(ϕ( f ))] ≥

Qp
τ [u(ϕ(g))], as we wanted to show. ��

Proof of Necessity in Theorem 2 Assume that U ( f ) = Qp
τ [u( f )] represents �, for

some nonconstant continuous utility u : ϒ → R, probability p : � → [0, 1] and
τ ∈ (0, 1), where

Qp
τ [u( f )] ≡ inf{α : p({s ∈ S : u( f (s)) ≥ α}) ≤ τ }.
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Axiom Q1 is easily seen to be satisfied: monotonicity follows the well-known
property of monotonicity of quantiles (see, for instance, de Castro and Galvao (2019,
Lemma A.1(vi), p. 1926)); nontriviality follows from the fact that u is nonconstant.

For Q2’(Continuity), use the terminology introduced above to observe that {g ∈
F : f � g} = {g ∈ F : u(xgj ) ≤ u(x f

i )}, which is easily seen to be closed in F .
Analogous reasoning works for {g ∈ F : g � f }, which establishes Q2’.

To see that Q4 (Ordinality) is satisfied, it is sufficient to observe that f � g ⇔
Qp

τ [u( f )] ≥ Qp
τ [u(g)] and ϕ( f ) � ϕ(g) ⇔ Qp

τ [u(ϕ( f ))] ≥ Qp
τ [u(ϕ(g))], and apply

Proposition 3.8.
To verify Betting Consistency (Q5), first observe that for any x, y ∈ ϒ and E ∈ �,

if x � y, then

U (xEy) =
{
u(x), if τ > 1 − p(E)

u(y), if τ ≤ 1 − p(E)
(28)

Let {A1, . . . , An} ⊂ 2S and {B1, . . . , Bn} ⊂ 2S for which
∑n

i=1 1Ai ≥ ∑n
i=1 1Bi .

Suppose, for a contradiction, that for all i ∈ {1, . . . , n}, U (x Bi x) > U (x Ai x)
for given x, x ∈ ϒ , with x � x . This is only possible if for all i ∈ {1, . . . , n},
U (x Bi x) = u(x) and U (x Ai x) = u(x). Hence, from (28), for all i ∈ {1, . . . , n},
p(Bi ) > 1 − τ and p(Ai ) ≤ 1 − τ . Let Ep[·] denote the expectation with respect to
p. As

∑n
i=1 1Ai (s) ≥ ∑n

i=1 1Bi (s), for all s ∈ S, Ep[∑n
i=1 1Ai ] = ∑n

i=1 p(Ai ) ≥
Ep[∑n

i=1 1Bi ] = ∑n
i=1 p(Bi ). However,

∑n
i=1 p(Bi ) > n(1 − τ) ≥ ∑n

i=1 p(Ai ), a
contradiction. ��

Now, we can adapt Proposition A.2 to the setting of Sect. 3.1.

Proposition A.3 If � satisfies axioms Q1-Q4, there exists u : ϒ → R and a unique
downset E ⊂ � such that ∅ ∈ E and S /∈ E for which

f � g ⇐⇒ I [u ◦ f ] ≥ I [u ◦ g],

where I : B0(�, u(ϒ)) → R is given by

I [ξ ] = inf{α : {s ∈ S : ξ(s) ≥ α} ∈ E}

for any ξ ∈ B0(�, u(ϒ)).

Proof Let I and u be those given by Lemma 3.1. Without loss of generality, we may
assume that u(x) = 1 and u(x) = 0. By Lemma A.1, we have I [1E ] ∈ {0, 1}. The
reminder of the proof of this proposition is very similar to the proof of Proposition A.2
and we thus omit it. ��
Proof of Theorem 1 With Proposition A.3, the proof of sufficiency of Theorem 1 fol-
lows closely that of Theorem 2 given above. In order to avoid repetitions, we will omit
the rest the proof.
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For necessity, the proofs for Q4 and Q5 are identical to those of Theorem 2. Q1 and
Q2 are also easily seen to hold. For Q3, it is sufficient to recall that u is affine and that

Qp
τ [u(α f + (1 − α)x)] = Qp

τ [αu( f ) + (1 − α)u(x)] = αQp
τ [u( f )] + (1 − α)Qp

τ [u(x)],

for α ∈ [0, 1], f ∈ F and x ∈ ϒ . The property follows immediately. ��
We prove Proposition 3.10 through a series of lemmas. For this, it will be useful

to introduce some additional notation. In what follows, let ϕ : ϒ → ϒ , an increasing
function, be fixed. For any function f : S → ϒ , let

α f ≡ Qp
τ [u( f )] = inf{α ∈ R : p ({s ∈ S : u( f (s)) ≤ α}) ≥ τ }, (29)

for a given probability p : � → [0, 1]. We will also use αg , αϕ( f ) and αϕ(g) with the
corresponding functions in the place of f above. Define

ψ(α) ≡ inf{u(ϕ(x)) : u(x) ≥ α} (30)

and

φ(α) ≡ sup{u(ϕ(x)) : u(x) < α}. (31)

It is clear thatφ(α) ≤ ψ(α): if u(x) < α ≤ u(x ′) then u(ϕ(x)) ≤ u(ϕ(x ′)).Moreover,
a known property of quantiles,18 we have:

p({s ∈ S : u( f (s)) ≤ α f }) ≥ τ ; and

p({s ∈ S : u(ϕ( f (s))) ≤ αϕ( f )}) ≥ τ, (32)

and similarly for g and ϕ(g).
The following result will be useful below:

Lemma A.4 The functions ψ and φ defined in (30) and (31), respectively, are increas-
ing.

Proof Let α ≤ α′. Then, {x ∈ ϒ : u(x) ≥ α} ⊃ {x ∈ ϒ : u(x) ≥ α′}, which implies

ψ(α) = inf{u(ϕ(x)) : u(x) ≥ α} ≤ inf{u(ϕ(x)) : u(x) ≥ α′} = ψ(α′).

Similarly, {x ∈ ϒ : u(x) < α} ⊂ {x ∈ ϒ : u(x) < α′}, which implies

φ(α) = sup{u(ϕ(x)) : u(x) < α} ≤ sup{u(ϕ(x)) : u(x) < α′} = φ(α′).

��
18 See, for instance, de Castro and Galvao (2019, Lemma A.1(iv), p. 1926).
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Lemma A.5 If p
({s ∈ S : u( f (s)) < α f }

) ≥ τ , then for any α < α f there exists
x ∈ ϒ such that α < u(x) < α f .

Proof From the assumption, the definition of α f and α < α f , we obtain

p
({s ∈ S : u( f (s)) < α f }

) ≥ τ > p ({s ∈ S : u( f (s)) ≤ α})
⇒ p

({s ∈ S : α < u( f (s)) < α f }
)

> 0.

Thus, there exists x ∈ ϒ such that α < u(x) < α f . ��

Proposition A.6 The following inequalities hold:

φ(α f ) ≤ Qp
τ [u(ϕ( f ))] ≤ ψ(α f ). (33)

Moreover, one of the inequalities holds as an equality. More precisely,

p
({s ∈ S : u( f (s)) < α f }

) ≥ τ �⇒ Qp
τ [u(ϕ( f ))] = φ(α f ); and (34)

p
({s ∈ S : u( f (s)) < α f }

)
< τ �⇒ Qp

τ [u(ϕ( f ))] = ψ(α f ). (35)

If φ(α f ) < ψ(α f ), the reverse direction in the above implications also hold, that is,
they are actually if and only if statements.

Proof First assume, for a contradiction, that Qp
τ [u(ϕ( f ))] > ψ(α f ). This means that

there exists x such that u(x) ≥ α f and Qp
τ [u(ϕ( f ))] > u(ϕ(x)). But then

p ({s ∈ S : u( f (s)) ≤ u(x)}) ≥ τ > p ({s ∈ S : u(ϕ( f (s))) ≤ u(ϕ(x))}) ,

where the first inequality comes from u(x) ≥ α f and the second from the definition of
Qp

τ [u(ϕ( f ))] and the inequality Qp
τ [u(ϕ( f ))] > u(ϕ(x)). But this is an absurd, since

{s ∈ S : u( f (s)) ≤ u(x)} ⊂ {s ∈ S : u(ϕ( f (s))) ≤ u(ϕ(x))}.
Next, we will show that Qp

τ [u(ϕ( f ))] = αϕ( f ) ≥ φ(α f ). For a contradiction,
assume that αϕ( f ) < φ(α f ). This means that there exists x such that u(x) < α f and
αϕ( f ) < u(ϕ(x)) ≤ φ(α f ). Let α = u(x). Then, by Lemma A.5, there exists x ′ such
that α = u(x) < u(x ′) < α f and αϕ( f ) < u(ϕ(x)) ≤ u(ϕ(x ′)) ≤ αϕ( f ), which is an
absurd. Therefore, Qp

τ [u(ϕ( f ))] = αϕ( f ) ≥ φ(α f ).
To verify (34), assume that p

({s ∈ S : u( f (s)) < α f }
) ≥ τ . By definition, for any

x ∈ ϒ , u(x) < α f implies u(ϕ(x)) ≤ φ(α f ). Therefore,

τ ≤ p
({s ∈ S : u( f (s)) < α f }

) ≤ p
({s ∈ S : u(ϕ( f (s))) ≤ φ(α f )}

)
,

which implies Qp
τ [u(ϕ( f ))] ≤ φ(α f ), from which (34) follows.
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To prove (35), assume that the inequality in its left holds and that Qp
τ [u(ϕ( f ))] =

αϕ( f ) < ψ(α f ). In this case,

τ > p
({s ∈ S : u( f (s)) < α f }

)
≥ p

({s ∈ S : u(ϕ( f (s))) < ψ(α f )}
)

≥ p
({s ∈ S : u(ϕ( f (s))) ≤ Qp

τ [u(ϕ( f ))]})
≥ τ,

where the second inequality comes from the definition of ψ(α), which guaran-
tees that u(ϕ( f (s))) < ψ(α) ⇒ u( f (s)) < α; the third inequality comes from
Qp

τ [u(ϕ( f ))] < ψ(α f ) and the last from (32). This contradiction establishes (35).
Since the inequalities on the left in (34) and (35) are complementary, one of its

conclusions must hold, that is, at least one of the inequalities (33) hold with equality.
Finally, assume that φ(α f ) < ψ(α f ). To see that the reverse implication in (34)
holds, consider two cases. If equality on the right hand side of (34) is false, the reverse
implication holds trivially. If the equality is true, then the equality on the right hand
side of (35) is false. By contraposition, the inequality on the left of (35) is also false.
Therefore, the inequality on the left of (34) is true, which shows the reverse implication
in (34). The proof for (35) is analogous. This concludes the proof of Proposition A.6.

��

Finally, we restate and prove Proposition 3.10 as the following corollary.

Corollary A.7 Assume that

p
({s ∈ S : u( f (s)) < α f }

)
< τ or p

({s ∈ S : u(g(s)) < αg}
) ≥ τ. (36)

Then α f ≥ αg ⇒ αϕ( f ) ≥ αϕ(g).

Proof For a contradiction, assume thatα f ≥ αg andαϕ( f ) < αϕ(g). ByLemmaA.6,we
have four cases to consider: (1)αϕ( f ) = ψ(α f ) andαϕ(g) = ψ(αg); (2)αϕ( f ) = φ(α f )

and αϕ(g) = φ(αg); (3) αϕ( f ) = ψ(α f ) and αϕ(g) = φ(αg); and (4) αϕ( f ) = φ(α f )

and αϕ(g) = ψ(αg).
The first two cases are immediate just using themonotonicity ofψ andφ established

in Proposition A.4. For instance, φ(αg) > φ(α f ) ⇒ αg > α f , which contradicts
α f ≥ αg . Case (3) also follows frommonotonicity, sinceψ(αg) ≥ φ(αg) > ψ(α f ) ⇒
αg > α f . Thus, we need to consider only case (4), that is,

ψ(αg) = inf{u(ϕ(x)) : u(x) ≥ αg} > sup{u(ϕ(x)) : u(x) < α f } = φ(α f ).

If there exists x such that α f > u(x) ≥ αg , we would have

ψ(αg) = inf{u(ϕ(x)) : u(x) ≥ αg} ≤ u(ϕ(x)) ≤ sup{u(ϕ(x)) : u(x) < α f } = φ(α f ),
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contradicting the assumption. Therefore, u(x) < α f ⇒ u(x) < αg , u(x) ≥ αg ⇒
u(x) ≥ α f , and

ψ(αg) = inf{u(ϕ(x)) : u(x) ≥ αg} ≥ inf{u(ϕ(x)) : u(x) ≥ α f } = ψ(α f ).

Since α f ≥ αg ⇒ ψ(α f ) ≥ ψ(αg), we conclude that ψ(α f ) = ψ(αg). Similarly,

φ(α f ) = sup{u(ϕ(x)) : u(x) < α f } ≤ sup{u(ϕ(x)) : u(x) < αg} = φ(αg),

and α f ≥ αg ⇒ φ(α f ) ≥ φ(αg) imply φ(α f ) = φ(αg). Therefore,

φ(α f ) = φ(αg) < ψ(α f ) = ψ(αg).

This means that the last condition in Proposition A.6 are satisfied by both f and g.
Since αϕ( f ) = φ(α f ) and αϕ(g) = ψ(αg), Proposition A.6 implies that

p
({s ∈ S : u( f (s)) < α f }

) ≥ τ > p
({s ∈ S : u(g(s)) < αg}

)
,

but this contradicts (36). ��
Proof of Theorem 3 As usual, it is easy to verify that the axioms are satisfied if the pref-
erence has the representation, that is, satisfies the recursive equation (18). Conversely,
from Proposition 4.1, we know that if � satisfies D1–D7, then � admits a recursive
representation (V ,W , I ) such thatW (c, x) = u(c)+b(c)x , with b(c) ∈ (0, 1). From
Koopmans (1972) and A1, b(c) is constant, that is, b(c) = β ∈ (0, 1).

Let F denote, as before, the set of functions f : S → C . Fix some c∞ =
(c0, c1, c2, . . .) ∈ C∞, define �∗ on F by:

f �∗ g ⇐⇒ (c0, f (·), c2, . . .) � (c0, g(·), c2, . . .). (37)

This preference is well defined and does not depend on c∞ ∈ C∞. It is clear that �∗
satisfies Q1–Q5. Therefore, by Theorem 2, there exists p : � → [0, 1] and τ ∈ (0, 1)
such that

f �∗ g ⇐⇒ Qp
τ [u( f )] ≥ Qp

τ [u(g)] (38)

where

Qp
τ [u( f )] ≡ inf{α : p({s ∈ S : u( f (s)) ≥ α}) ≤ τ }.

Since quantiles preferences are invariant to strictly increasing and continuous trans-
formations, we can use in (38) the same u : C → [0, 1] provided by Proposition 4.1.
By the definition of �∗ and the recursive representation (V ,W , I ),

f �∗ g ⇐⇒ I [u( f )] ≥ I [u(g)].
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Therefore, by (38), there exists a strictly increasing function ξ : R → R such that
I [u( f )] = ξ

(
Qp

τ [u( f )]) for any f ∈ F . Since I [x] = x = Qp
τ [x] for any x ∈ R, ξ

must be the identity. ��
Proof of Proposition 5.2 See Manski (1988). ��
Proof of Proposition 5.4 SeeRostek (2010, Section 6.1) orManski (1988, Section 5) for
the equivalence of (1) and (2). The other two equivalences follow fromProposition 5.2.

��
Proof of Proposition 5.5 For contradiction assume that there exists f : S → C such
that I 1[u( f )] > I 2[u( f )]. Define h=(h0, f , f , . . .). Pick c ∈ C such that I 1[u( f )] >

u(c) > I 2[u( f )]. Let c∞ = (c, c, . . .). Then,

V 1(h) = u(h0) + β I 1[V 1(h1)] > V 1(c∞) =
∞∑
t=0

β t u(ct )

= V 2(c∞) ≥ V 2(h) = u(h0) + β I 1[V 2(h1)],

that is, V 2(c∞) ≥ V 2(h) but V 1(h) > V 1(c∞), thus contradicting (19). Conversely,
I 1[·] ≤ I 2[·] implies V 1(h) ≤ V 2(h) for any h ∈ H. Thus, it cannot happen the
negation of (19), that is, V 1(h) > V 1(c∞) = V 2(c∞) ≥ V 2(h). ��
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