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Abstract In a partition model, we show that each maximin individually rational and
ex ante maximin efficient allocation of a single good economy is implementable as
a maximin equilibrium. When there are more than one good, we introduce three
conditions. If none of the three conditions is satisfied, then a maximin individually
rational and ex ante maximin efficient allocation may not be implementable. However,
as long as one of the three conditions is satisfied, each maximin individually rational
and ex ante maximin efficient allocation is implementable. Our work generalizes and
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1 Introduction

We study the implementation of maximin individually rational and ex ante maximin
efficient allocations in an ambiguous asymmetric information economy. The imple-
mentation notion is the same as in de Castro et al. (2015). That is, we check whether
each maximin individually rational and ex ante maximin efficient allocation can be
reached through a mechanism as a maximin equilibrium. In a maximin equilibrium,
each agent maximizes the payoff that takes into account the worst actions of all the
other agents against him and also the worst state that can occur. This paper differs from
de Castro et al. (2015) in that we consider a more general setup, which includes de
Castro et al. (2015) as a special case. This new and more general framework allows us
to consider the standard exchange economies with differential information that have
been studied in the literature, e.g., Angelopoulos and Koutsougeras (2015), Castro
et al. (2011), Yannelis (1991) among others.

In particular, we adopt a partition model and indicate that the results of this paper
cannot be captured by the type model of de Castro et al. (2015). As a matter of fact, the
typemodel cannot capture the standard two persons economies as it is shown in Sect. 3.
Our economy consists of a finite set of states of nature, a finite set of agents, each of
whom is characterized by an information partition, a multi-prior set, a random initial
endowment and an ex post utility function. Furthermore, the agents have maximin
preferences.

In an ambiguous asymmetric information economy, de Castro and Yannelis (2009)
showed that any efficient allocation is incentive compatiblewith respect to themaximin
preferences.1 This is not true in the standard expected utility (Bayesian) framework.
Indeed, an efficient allocation may not be incentive compatible with respect to the
Bayesian preferences as it was shown by Holmström and Myerson (1983). Further-
more, Palfrey and Srivastava (1987) showed that under the Bayesian preferences,
neither efficient allocations nor core allocations define implementable social choice
correspondence, when agents are incompletely informed about the environment. In a
recent paper, de Castro et al. (2015) showed that if an ambiguous asymmetric infor-
mation economy can be represented by the standard type model of the implementation
literature, then each maximin individually rational and ex ante maximin efficient allo-
cation is implementable as a maximin equilibrium.

1 A related work is done by Bosmans and Ooghe (2013). They showed that maximin is the only criterion
satisfying anonymity, continuity, weak Pareto and weak Hammond equity.
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However, many economies are not representable by the standard type model. Our
partition model includes these economies. We illustrate with an example that in such
an economy, the agents may strictly prefer a maximin individually rational and ex ante
maximin efficient allocation to their initial endowment. Consequently, the problem of
implementation in these economies is relevant and interesting.

The main result of the paper is that each maximin individually rational and ex ante
maximin efficient allocation of a single good economy is implementable. When there
are more than one good, we characterize three sufficient conditions. As long as one
of the three conditions is satisfied, each maximin individually rational and ex ante
maximin efficient allocation is implementable. We show by means of examples that if
none of the three conditions holds, then a maximin individually rational and ex ante
maximin efficient allocationmay not be implementable. However, the three conditions
are not necessary for implementation.

Since the concepts maximin core allocations, maximin value allocations and max-
iminWalrasian expectations equilibrium allocations defined in de Castro andYannelis
(2009), Angelopoulos and Koutsougeras (2015), He and Yannelis (2015) are all max-
imin individually rational and ex ante maximin efficient, the implementation of these
allocations in a more general model is captured by this paper.We differ from de Castro
et al. (2015) in that we allow the players’ reports to be incompatible. It follows that
the type model of de Castro et al. (2015) can be converted into a partition model.
However, the converse is not true in general as we will show in Sect. 3.

The paper is organized as follows. Section2 defines an ambiguous asymmetric
information economy and introduces the maximin individually rational and ex ante
maximin efficient notions. In Sect. 3, we present a counterexample which indicates
why the type model cannot capture the case of incompatible reports when agents’
preferences are maximin. In Sect. 4, we introduce the direct revelation mechanism
and the maximin equilibrium. Sections5 and 6 present the main results of the paper.
Finally, we conclude in Sect. 7.

2 Ambiguous asymmetric information economy

Let � denote a finite set of states of nature, ω ∈ � a state of nature, R
�+ the �-goods

commodity space and I the set of N agents, i.e., I = {1, . . . , N }. An ambiguous
asymmetric information economy E is a set E = {�; (Fi , Pi , ei , ui ) : i ∈ I }.

Fi is a partition of �. Let EFi ∈ Fi denote an event and ω ∈ EFi a state in the
event. Then, in the interim, if the state ω occurs, agent i only knows that the event
EFi has occurred. We impose the standard assumption, that when a state occurs, and
all agents truthfully report their information, they will know the realized state.2 That
is,

Assumption 1 For eachω,
⋂

j∈I EF j (ω) = {ω}, where EF j (ω) denotes the element
in F j that contains the state ω.

2 This assumption is without loss of generality, since if there exist two different states ω and ω′, such that
no agent is able to distinguish them, then the two states may as well be treated as one state.
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236 L. I. de Castro et al.

Since the events are observable in the interim, it is natural to assume that at ex ante
each agent is able to form a probability assessment over his partition. For each i , let
μi : σ (Fi ) → [0, 1] be a probability measure defined on the algebra generated by
agent i’s partition.

Assumption 2 For each i and for each event EFi ∈ Fi , μi
(
EFi

)
> 0.

Each μi is a well-defined probability, but it is not defined on every state of nature.
Indeed, if EFi = {

ω,ω′} with ω �= ω′, then the probability of the event EFi is well
defined, but not the probability of the event {ω} or the event {ω′}. Let �i be the set of
all probability measures over 2� that agree with μi . Formally,

�i = {
probability measure πi : 2� → [0, 1] | πi (A) = μi (A) ,∀A ∈ σ (Fi )

}
.

Let Pi , a nonempty, closed and convex subset of �i , be agent i’s multi-prior set.
Agent i’s random initial endowment is ei : � → R

�+. Each agent receives his
endowment in the interim. That is, ei isFi -measurable, meaning that ei (·) is constant
on each element of Fi . Formally,

Assumption 3 Let Fi be agent i’s partition and fix any ωk ∈ �. We have ei (ω) =
ei (ωk) for any ω ∈ EFi (ωk).

This ensures that at each state ω, the event EFi (ω) incorporates the information
revealed by the endowment. Clearly, if each ei is state independent, then it is automat-
ically Fi -measurable. Assuming ei to be Fi -measurable is more general than being
constant.

Finally, ui : R
�+ × � → R is agent i’s ex post utility function, taking the form of

ui (ci ;ω), where ci denotes agent i’s consumption. The ex post utility function ui is
strictly monotone in consumption.3 Also, we assume that each agent knows his utility
function in the interim, and consequently, each agent’s utility function needs to be
Fi -measurable. Formally,

Assumption 4 For each i and for each fixed ci ∈ R
�+, ui (ci ; ·) is Fi -measurable.

That is, given any ci ∈ R
�+, and any two states ω, ω̂ ∈ �, with ω �= ω̂, we have

ui (ci ;ω) = ui
(
ci ; ω̂

)
, whenever ω ∈ EFi

(
ω̂

)
.

The Fi -measurability of the ex post utility functions is often assumed in games
with incomplete information. Indeed, one may regard Fi as agent i’s type space, and
EFi ∈ Fi as a possible type of agent i . Then clearly, assuming the function ui (ci ; ·)
to be Fi -measurable, is the same as assuming ui to depend on agent i’s type.

Let L denote the set of all functions from� toR
�+. Agent i’s allocation (or in short,

i-allocation) specifies his consumption bundle at each state of nature, i.e., xi ∈ L . Let
x = (x1, . . . , xN ) denote an allocation of the above economy E . An allocation x is
said to be feasible, if for each ω ∈ �,

∑
i∈I xi (ω) = ∑

i∈I ei (ω).
We postulate that the agents have maximin preferences (see Gilboa and Schmeidler

(1989)).

3 For each fixed ω, we have ui (ci ;ω) < ui (ci + ε; ω), whenever ε is a none zero vector in R
�+.
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Ambiguous implementation: the partition model 237

Definition 1 Take any two allocations of agent i , fi and hi , from the set L . Agent i
prefers fi to hi under the maximin preferences (written as fi �MP

i hi )

min
πi∈Pi

∑

ω∈�

ui ( fi (ω) ;ω) πi (ω) ≥ min
πi∈Pi

∑

ω∈�

ui (hi (ω) ;ω) πi (ω) . (1)

Furthermore, agent i strictly prefers fi to hi , fi 	MP
i hi , if he prefers fi to hi but

not the reverse, i.e., fi �MP
i hi but hi �

MP
i fi .

The Bayesian and the Wald-type maximin preferences of de Castro and Yannelis
(2009)4 are special cases of this general multi-prior model. Indeed, if each agent has
a prior, i.e., Pi is a singleton set for each i , then the multi-prior preferences become
the Bayesian preferences. If Pi = �i for each i , then the multi-prior preferences
become the maximin preferences in de Castro and Yannelis (2009). They (de Castro
and Yannelis 2009) showed that (1) is equivalent to the following formulation

∑

EFi ∈Fi

(

min
ω∈EFi

ui ( fi (ω) ;ω)

)

μi

(
EFi

)

≥
∑

EFi ∈Fi

(

min
ω∈EFi

ui (hi (ω) ;ω)

)

μi

(
EFi

)
. (2)

The interest of the maximin preferences in de Castro and Yannelis (2009) comes
from that only under these preferences any efficient allocation is incentive compatible.5

Indeed, under the Bayesian preferences, an efficient allocation may not be incentive
compatible as it was shown by Holmström and Myerson (1983).

The notions of individual rationality and efficiency below are standard, except now
the preferences are maximin.

Definition 2 A feasible allocation x = (xi )i∈I is said to be (maximin) individually
rational, if for each i ∈ I , xi �MP

i ei .

Definition 3 A feasible allocation x = (xi )i∈I is said to be ex ante maximin efficient,
if there does not exist another feasible allocation y = (yi )i∈I , such that yi �MP

i xi
for all i , and yi 	MP

i xi for at least one i .

Remark 1 Some examples of maximin individually rational and ex ante maximin
efficient allocations are maximin core allocations, maximin value allocations and

4 See also de Castro et al. (2015).
5 In addition to the fact that there is no longer a conflict between efficiency and incentive compatibility under
the maximin preferences, the adoption of these preferences provides new insights and superior outcomes
than theBayesian preferences as it has been shown inAngelopoulos andKoutsougeras (2015), Bodoh-Creed
(2012), Bose et al. (2006), de Castro andYannelis (2009), Castro et al. (2011), de Castro et al. (2015), Gollier
(2014), He and Yannelis (2015), Koufopoulos and Kozhan (2016), Liu (2014), Ohtaki and Ozaki (2015),
Traeger (2014), just to name a few. Furthermore, the maximin preferences solve the Ellsberg Paradox (see,
e.g., Castro and Yannelis (2013)). Interestingly, ambiguity does not necessarily vanish through statistical
learning in an one-urn environment (Zimper and Ma (2016)).
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maximin Walrasian expectations equilibrium allocations defined in de Castro and
Yannelis (2009), Angelopoulos and Koutsougeras (2015), He and Yannelis (2015).

3 A comparison with de Castro–Liu–Yannelis

With the standard type model, de Castro et al. (2015) showed that in an �-goods
economy, each maximin individually rational and ex ante maximin efficient allocation
can be reached by means of noncooperation. The standard type model is less general
than the partition model of this paper. A partition model can be represented by the
standard typemodel if the economy satisfies a stronger assumption thanAssumption 1:

Assumption 5 For any j ∈ I and EF j ∈ F j ,
⋂

j∈I EF j = {ω} for some ω ∈ �.

Assumption 5 ensures that there is always an agreed state, regardless of the agents’
reports.6 UnlikeAssumption 1,Assumption 5 does not allow incompatible reports, i.e.,
the existence of a combination EF1, . . . , EFN with

⋂
j∈I EF j = ∅. Clearly, Assump-

tion 5 is not satisfied by many economies. For a detailed discussion on the relationship
between partition model and type model, please see de Castro et al. (2016). Below we
present a counterexample which indicates why the type model cannot capture the case
of incompatible reports when agents are ambiguous. This is not the case for agents
with Bayesian preferences. Furthermore, in the economy below, the agents are strictly
better off if they trade, and therefore, the problem of implementation is relevant and
interesting.

Example 1 There are two agents, one good, and three possible states of nature � =
{a, b, c}. The ex post utility function of each agent i is ui (ci ;ω) = √

ci . The agents’
random initial endowments, information partitions and multi-prior sets are:

(e1 (a) , e1 (b) , e1 (c)) = (5, 5, 1) ; F1 = {{a, b} , {c}}
(e2 (a) , e2 (b) , e2 (c)) = (5, 1, 5) ; F2 = {{a, c} , {b}}
P1 =

{

probability measure π1 : 2� → [0, 1] | π1 ({a, b}) = 2

3
and π1 ({c})= 1

3

}

.

P2 =
{

probability measure π2 : 2� → [0, 1] | π2 ({a, c}) = 2

3
and π2 ({b})= 1

3

}

.

A maximin individually rational and ex ante maximin efficient allocation is

x =
(
x1 (a) x1 (b) x1 (c)
x2 (a) x2 (b) x2 (c)

)

=
(
5 4.8 1.2
5 1.2 4.8

)

.

6 Indeed, in the standard type model, each agent i has a type set Ti , and the set of states of nature is
T = T1 × · · · × TN . Let Ti = Fi and T = �, then we have T = T1 × · · · × TN because of Assumption 5.
That is, if a partition model satisfies Assumption 5, then it can be represented by the standard type model.

123



Ambiguous implementation: the partition model 239

Notice that both agents strictly prefer the allocation x to the initial endowment e under
the maximin preferences. Indeed, we have for each i ,

2

3
min

{√
5,

√
5
}

+ 1

3

√
1 = 1.824 <

2

3
min

{√
5,

√
4.8

}
+ 1

3

√
1.2 = 1.826.

This economy cannot be captured by the type model adopted in de Castro et al.
(2015). Indeed, in the terminology of a type model, each player has two types, T1 =
{{a, b} , {c}} and T2 = {{a, c} , {b}}. It follows that the set of states of nature T =
T1 × T2 has four elements. Since there are only three states of nature a, b and c in
this economy, it is not possible to represent the economy by the type model, unless
we add a zero probability state d. Due to the nonzero probability event assumption
(Assumption 1 of de Castro et al. (2015)), we cannot have {d} ∈ Ti , i = 1, 2. The only
way to incorporate the state d is to have T1 = {{a, b} , {c, d}} and T2 = {{a, c} , {b, d}}.
However, this is not consistent with the non-Bayesian expected utility of this paper.
In a Wald-type maximin model, an agent does not form a probability assessment on
the states that he cannot distinguish.7 Since states c and d are in the same event, agent
1 cannot distinguish these two states. However, if agent 1 knows that state d occurs
with probability zero, then he can form a unique probability assessment on the states
within the event {c, d}, i.e., π1 ({c}) = 1

3 and π1 ({d}) = 0. This contradicts the fact
that an ambiguous agent assigns a probability only on an event (and not on the states
in the event that he cannot distinguish). A similar argument holds for agent 2 at the
event {b, d}.

The question we pose is the following: Could one provide a noncooperative foun-
dation for the maximin efficient andmaximin individually rational notions in a general
partition model? We address this question in the next section. Since the type model of
de Castro et al. (2015) cannot cover incompatible reports, the proof of de Castro et al.
(2015) does not work here. Our work generalizes and extends de Castro et al. (2015).

4 The direct revelation mechanism and the maximin equilibrium

A direct revelation mechanism is a noncooperative game, which is defined based on
an allocation and its underlying ambiguous asymmetric information economy.

In the interim, a state of nature ω is realized. Each player i privately observes the
event EFi (ω) and receives the initial endowment ei (ω). Then, each player i reports
EFi ∈ Fi , but the report EFi may not be truthful.

Definition 4 Suppose the realized state (the true state) is ω. Then, a report of player
i , EFi ∈ Fi , is a lie, if it differs from the event EFi (ω).

Definition 5 A strategy of player i is a function si : Fi → Fi .

Let Si denote player i’s strategy set, S = ×i∈I Si the strategy set and s ∈ S
a strategy profile. For simplicity, we slightly abuse the notation, and use s (ω) to

7 In this paper, an agent cannot distinguish the states of nature within an event EFi ∈ Fi .
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240 L. I. de Castro et al.

Fig. 1 Timeline

denote the players’ reports, when they adopt the strategy profile s, and the realized
state is ω, i.e., s (ω) = (

s1
(
EF1 (ω)

)
, . . . , sN

(
EFN (ω)

))
. Clearly, for any ω ∈ �,

s (ω) ∈ ×i∈IFi .
The players report events simultaneously. The reports then determine their net

transfers. Figure 1 shows the timeline, as in de Castro et al. (2015).

Definition 6 Let x be the planned allocation. The planned redistribution (planned net
transfer) is given by x−e. That is, the planned redistribution is the adjustments needed
to go from the initial endowment e to x .

The planned redistribution and the players’ reports together determine the
actual redistribution. From Assumption 1, we know for any collection of reports
EF1 , . . . , EFN , the

⋂
j∈I EF j is either singleton or empty.

Definition 7 We say the reports EF1 , . . . , EFN are compatible, if
⋂

j∈I EF j = {ω̃},
for some ω̃ ∈ �. Furthermore, we refer the state ω̃ as the implied state (the agreed
state).

The implementation literature often assumes a feasibility condition, i.e., the set of
feasible alternatives is the same across the states of nature. Now, our players receive
initial endowments first, and then redistribute the endowments based on their reports,
as in de Castro et al. (2015). We adopt the feasibility condition of de Castro et al.
(2015) that each player is rich enough to participate in the revelation mechanism. That
is, for each i , ω and ω̃, we have ei (ω) + xi (ω̃) − ei (ω̃) ∈ R

�+.
When the reports EF1 , . . . , EFN are compatible, the players end up with e (ω) +

x (ω̃)−e (ω̃), where ω̃ is the agreed state, and x (ω̃)−e (ω̃) is the planned redistribution
specified for the state ω̃. Clearly, if all the players tell the truth, then ω̃ = ω and the
players get what they planned to get, e (ω) + x (ω) − e (ω) = x (ω). However, since
some player may successfully lie, ω̃ may not be the true state. As a consequence,
e (ω) + x (ω̃) − e (ω̃) may differ from x (ω), i.e., the players may not end up with the
planned allocation.

When the reports are not compatible at the realized state ω, lies are detected.
There are many ways to resolve the players’ payoffs. In a single good economy,
the mechanism designer (MD) could appropriate minω∈� {xi − ei } from each player
i . The MD does not know the realized state, but he knows the planned redistribution
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Ambiguous implementation: the partition model 241

x − e, so he knows minω∈� {xi − ei } for each player i . In an �-goods economy, the
mechanism designer could randomly pick a state ω̃ and enforce the net transfer x (ω̃)−
e (ω̃). Furthermore, no trade is also an option, that is, each player keeps his initial
endowments. The role of the MD is standard. That is, the MD is not a player in this
paper.8 When a ‘punishment’ is due according to the rules of the mechanism, the MD
does not worry about whether carrying out this ‘punishment’ is socially optimal or not.
As we will show in the proof of Theorem 1, the MD does not need to actually impose
the ‘punishment.’ The threat that he will appropriate minω∈� {xi − ei } from each
player when the reports are incompatible, will induce the players to report truthfully.

Let Di
(
x − e,

(
EF1 , . . . , EFN

))
denote the actual redistribution of player i . It

depends on the planned redistribution x − e and the players’ reports. Its exact form
will be defined in Sects. 5 and 6.

Definition 8 Let gi be the outcome function of player i , which depends on the planned
redistribution, the reports of the players and the realized state of nature, i.e.,

gi
(
x − e,

(
EF1 , . . . , EFN

)
, ω

)
= ei (ω) + Di

(
x − e,

(
EF1, . . . , EFN

))
, (3)

where ei (ω) + Di
(
x − e,

(
EF1 , . . . , EFN

))
is the bundle of the goods, that player i

ends up consuming.

Finally, define for each i a final payoff function, which tells us the final payoff that
player i ends up. Formally,

Definition 9 Denote by vi the final payoff function of player i . It takes the form of
vi

(
x − e,

(
EF1 , . . . , EFN

) ;ω
) = ui

(
ei (ω) + Di

(
x − e,

(
EF1 , . . . , EFN

)) ;ω
)
.

In what follows, we write vi
((
EF1 , . . . , EFN

) ;ω
)
instead of vi (x − e,

(
EF1, . . . , EFN

) ;ω
)
f or convenience.

A direct revelation mechanism associated with a planned allocation x and its under-
lying ambiguous asymmetric information economy E = {

�; (Fi , Pi , ei , ui )i∈I
}
is a

set 	 = 〈
I, S, x − e, {gi }i∈I , {vi }i∈I

〉
.

In view of the players’ Wald-type maximin preferences, we adopt the maximin
equilibrium of de Castro et al. (2015). It says that every player adopts a criterion a la
Wald Wald (1950). That is, each player maximizes the payoff that takes into account
the worst actions of all the other players against him and also the worst state that can
occur.

Definition 10 In a direct revelation mechanism 	 = 〈
I, S, x − e, {gi }i∈I , {vi }i∈I

〉
,

a strategy profile s∗ = (
s∗
1 , . . . , s

∗
N

)
constitutes a maximin equilibrium (ME), if for

each player i , his strategy s∗
i maximizes his interim payoff lower bound, that is, the

function s∗
i : Fi → Fi satisfies, for each EFi ∈ Fi ,

8 There are interesting papers in which the MD is a player. We refer interested readers to Chakravorty et al.
(2006) and Baliga et al. (1997).

123
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min
EF−i ∈F−i ; ω′∈EFi

vi

(
s∗
i

(
EFi

)
, EF−i ;ω′)≥ min

EF−i ∈F−i ; ω′∈EFi
vi

(
ÊFi , EF−i ;ω′) ,

(4)
for all ÊFi ∈ Fi , where EF−i denotes the reports from all the other players, so
EF−i ∈ F−i = × j �=iF j .

The maximin equilibrium has the flavor of the robust control of Hansen and Sargent
(2001) in which the decisionmakermaximizes his payoff taking into account the worst
possible model.9 Unlike the restricted maximin equilibrium notion of Dasgupta et al.
(1979), the maximin equilibrium does not need each player to correctly guess his
opponents’ strategies to reach an equilibrium. Moreover, the maximin equilibrium is
unique, whenever truth telling is optimal for each player.10

Now, we say an allocation x is implementable, if x can be realized through a
maximin equilibrium of the direct revelation mechanism 	 = 〈

I, S, x − e, {gi }i∈I ,
{vi }i∈I

〉
.

Let ME (	) denote the set of maximin equilibria of the mechanism 	.

Definition 11 Let x be an allocation of an ambiguous asymmetric information
economy E , and ME (	) the set of maximin equilibria of the mechanism 	 =〈
I, S, x − e, {gi }i∈I , {vi }i∈I

〉
. We say the allocation x is implementable as a max-

imin equilibrium of the mechanism 	 if,

∃s∗ ∈ ME (	) , such that gi
(
x − e, s∗ (ω) , ω

) = xi (ω) ,

for each ω ∈ � and for each i ∈ I .

Definition 12 A strategy profile s is truth telling, if for each i , si
(
EFi

) = EFi for
each EFi ∈ Fi . We denote such a strategy profile by sT .

Remark 2 Clearly, if the mechanism 	 has a truth telling maximin equilibrium, i.e.,
sT ∈ ME (	), then the allocation x is implementable as a maximin equilibrium of 	.
Indeed, for each state ω, sT (ω) = (

EF1 (ω) , . . . , EFN (ω)
)
. It follows that

gi
(
x − e, sT (ω) , ω

)
= gi

(
x − e,

(
EF1 (ω) , . . . , EFN (ω)

)
, ω

)

= ei (ω) + Di

(
x − e,

(
EF1 (ω) , . . . , EFN (ω)

))

= ei (ω) + xi (ω) − ei (ω) = xi (ω) ,

for each ω ∈ � and for each i ∈ I , which is the requirement of Definition 11.

Remark 3 The implementation results depend on the payoff rules of the direct rev-
elation mechanism. In a type model, the players’ reports are always compatible. de

9 The robust control approach presumes that decision makers are able to specify the set of possible models,
but are either unable or unwilling to form a prior over the forms of model misspecification.
10 Aryal and Stauber (2014) introduced the notions of ε-perfect maxmin equilibrium, perfect maxmin
equilibrium and robust sequential equilibrium. Their notions allow players to make small mistakes which
is not the case with our notion of maximin equilibrium.
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Castro et al. (2015) implements each maximin individually rational and ex ante max-
imin efficient allocation of an �-goods economy. In this paper, the players’ reports may
not be compatible. We include the players’ net transfers (redistribution) when their
reports are not compatible. Interestingly, if these net transfers (‘punishments’) are too
gentle or too crude, then a lie can be profitable. The ‘punishments’ of this paper are
just right to induce truth telling.

In a single good economy, if the planned redistribution for ω is larger than the
planned redistribution for ω̂, then a player likes the former more regardless of the
realized state, since his utility function is strictly monotone in consumption. It follows
that if a player can strictly benefit from lying, then it is possible to Pareto improve
the planned allocation by reducing the variation of the planned redistribution across
states. This contradicts with the efficiency of the planned allocation. That is, if the
planned allocation is efficient, then it is not possible to benefit from lying. However,
in an � > 1 goods economy, the argument for the single good economy does not work.
In particular, when a player can benefit from lying, it may not be possible to alter the
planned redistribution to achieve a Pareto improvement. Indeed, now a player may
like good 1 more than good 2 at state ω, and like good 2 more than good 1 at state
ω′. That is, it is possible to benefit from lying, even when the planned allocation is
efficient. It follows that we need additional conditions to implement each maximin
individually rational and ex ante maximin efficient allocation.

5 Implementation in a single good economy

5.1 Implementation

We show that each maximin individually rational and ex ante maximin efficient
allocation x in a single good economy is implementable through its corresponding
mechanism 	 = 〈

I, S, x − e, {gi }i∈I , {vi }i∈I
〉
.

Let x − e denote a planned redistribution, and
(
EF1 , . . . , EFN

)
a list of reports.

Definition 13 The actual redistribution of player i is given by

Di
(
x − e,

(
EF1 , . . . , EFN

)) =
⎧
⎨

⎩

xi (ω̃) − ei (ω̃) if ∩ j∈I EF j = {ω̃}

minω′∈�

{
xi

(
ω′) − ei

(
ω′)} if ∩ j∈I EF j = ∅.

That is, when reports are not compatible, the mechanism designer (MD) appropri-
ates minω∈� {xi − ei } from each player i .

Theorem 1 Denote by x amaximin individually rational and ex antemaximin efficient
allocation of a single good economy and ME (	) the set of maximin equilibria of the
direct revelation mechanism 	 = 〈

I, S, x − e, {gi }i∈I , {vi }i∈I
〉
. Then, there exists a

truth telling maximin equilibrium sT , which is the unique maximin equilibrium of
the mechanism 	 (i.e.,

{
sT

} = ME(	)), for which we have gi
(
x − e, sT (ω) , ω

) =
xi (ω), for each ω ∈ � and for each i ∈ I , i.e., the allocation x is implementable as
a maximin equilibrium of its corresponding mechanism 	.
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Remark 4 Since maximin core allocations, maximin value allocations and maximin
Walrasian expectations equilibrium allocations are maximin individually rational and
ex ante maximin efficient in a partition model, it follows that they are implementable
as a maximin equilibrium.

Remark 5 We differ from the full implementation of Jackson (1991), Palfrey and Sri-
vastava (1987), Palfrey and Srivastava (1989) and Hahn and Yannelis (2001) in that,
our players are Wald-type maximin not Bayesian. Furthermore, we do not implement
all equilibrium allocations. Instead, we pick an allocation and fully implement the
allocation with a mechanism, a la Bergemann and Morris (2009). de Castro et al.
(2015) showed that the maximin implementation of this paper and the robust imple-
mentation of Bergemann andMorris (2009) are different. For further discussion on the
relationship between robust implementation andmaximin implementation in a general
setting, we refer readers to Guo and Yannelis (2015).

5.2 Heuristic proof

Now we provide a heuristic proof by means of an example. A complete proof will be
given in the next section.

Example 2 Recall Example 1. There are two agents, one commodity, and three pos-
sible states of nature � = {a, b, c}. The ex post utility function of each agent i is
ui (ci ;ω) = √

ci . The agents’ random initial endowments, information partitions and
multi-prior sets are:

(e1 (a) , e1 (b) , e1 (c)) = (5, 5, 1) ; F1 = {{a, b} , {c}}
(e2 (a) , e2 (b) , e2 (c)) = (5, 1, 5) ; F2 = {{a, c} , {b}}
P1 =

{

probability measure π1 : 2� → [0, 1] | π1 ({a, b}) = 2

3
and π1 ({c})= 1

3

}

.

P2 =
{

probability measure π2 : 2� → [0, 1] | π2 ({a, c}) = 2

3
and π2 ({b})= 1

3

}

.

A maximin individually rational and ex ante maximin efficient allocation is

x =
(
x1 (a) x1 (b) x1 (c)
x2 (a) x2 (b) x2 (c)

)

=
(
5 4.8 1.2
5 1.2 4.8

)

.

Let the planned allocation be x . Then, the planned redistribution x − e is

(x1 (a) − e1 (a) , x1 (b) − e1 (b) , x1 (c) − e1 (c)) = (0,−0.2, 0.2)

and

(x2 (a) − e2 (a) , x2 (b) − e2 (b) , x2 (c) − e2 (c)) = (0, 0.2,−0.2) .
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Fig. 2 An informal game tree

Fig. 3 At player 1’s information sets

The game tree is presented in Fig. 2, in which for simplicity, we let A1 = {a, b},
c1 = {c}, A2 = {a, c}, and b2 = {b}.Wewill show that the truth telling strategy profile
constitutes the onlymaximin equilibrium of the game, and the immediate consequence
is that the allocation x is implemented. Formally, we will show that the strategy profile
s = (s1 (A1) = A1, s1 (c1) = c1; s2 (A2) = A2, s2 (b2) = b2), constitutes the only
maximin equilibrium of the game.

We look at player 1 first, and she has two information sets I1 and I ′
1 (Fig. 3).

If she is at I1, then she must have seen the event A1 from nature. She can either
tell the truth A1 or the lie c1. Player 1 cannot distinguish the two decision nodes
within the set I1, so her action is common at the two nodes. Figure3a shows that,
being truthful (reports A1), she may end up with, from the left to the right, 5, 4.8,
5 or 4.8 units of the good. That is, at the information set I1, if player 1 tells the
truth, then she may go down one of the four paths ‘aA1A2,’ ‘aA1b2,’ ‘bA1A2’ and
‘bA1b2,’ for which she ends up with g1 (x − e, (A1, A2) , a) = e1 (a) + x1 (a) −
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e1 (a) = 5 + 0 = 5, g1 (x − e, (A1, b2) , a) = e1 (a) + x1 (b) − e1 (b) = 5 −
0.2 = 4.8, g1 (x − e, (A1, A2) , b) = e1 (b) + x1 (a) − e1 (a) = 5 + 0 = 5, and
g1 (x − e, (A1, b2) , b) = e1 (b) + x1 (b) − e1 (b) = 5− 0.2 = 4.8 units of the good,
respectively. Similarly, by lying (reports c1), she may end up with, from the left to
the right, 5.2, 4.8, 5.2 or 4.8 units of the good.11 Clearly, when player 1 observes the
event A1, telling the truth (reports A1) gives her a lower bound payoff of

min {v1 (A1, A2; a) , v1 (A1, b2; a) , v1 (A1, A2; b) , v1 (A1, b2; b)}
= min

{√
5,

√
4.8,

√
5,

√
4.8

}
= √

4.8;

lying (reports c1) gives her a lower bound payoff of

min {v1 (c1, A2; a) , v1 (c1, b2; a) , v1 (c1, A2; b) , v1 (c1, b2; b)}
= min

{√
5.2,

√
4.8,

√
5.2,

√
4.8

}
= √

4.8.

So when she observes the event A1, she has no incentive to lie, i.e., s1 (A1) = A1
constitutes part of a maximin equilibrium of the game.

If player 1 is at I ′
1, then she must have seen the event c1 from nature. Fig-

ure3b shows that telling the truth (reports c1) gives her a lower bound payoff of

min {v1 (c1, A2; c) , v1 (c1, b2; c)} = min
{√

1.2,
√
0.8

}
= √

0.8; lying (reports

A1) gives her a lower bound payoff of min {v1 (A1, A2; c) , v1 (A1, b2; c)} =
min

{√
1,

√
0.8

}
= √

0.8. So when she observes the event c1, she has no incentive to

lie, i.e., s1 (c1) = c1 constitutes part of a maximin equilibrium of the game.
Now, turn to player 2. He has two information sets also, I2 and I ′

2 (Fig. 4).
If player 2 is at I2, then he must have seen the event A2 from nature. Figure4a

shows that, being truthful (reports A2), he may end up with, from the left to the right,
5, 4.8, 5 or 4.8 units of the good; and by lying (reports b2), he may end up with, from
the left to the right, 5.2, 4.8, 5.2 or 4.8 units of the good. Clearly, telling the truth
(reports A2) gives him a lower bound payoff of

min {v2 (A1, A2; a) , v2 (c1, A2; a) , v2 (A1, A2; c) , v2 (c1, A2; c)}
= min

{√
5,

√
4.8,

√
5,

√
4.8

}
= √

4.8;

lying (reports b2) gives him a lower bound payoff of

min {v2 (A1, b2; a) , v2 (c1, b2; a) , v2 (A1, b2; c) , v2 (c1, b2; c)}
= min

{√
5.2,

√
4.8,

√
5.2,

√
4.8

}
= √

4.8.

So when he observes the event A2, he has no incentive to lie, i.e., s2 (A2) = A2
constitutes part of a maximin equilibrium of the game.

11 Notice that both path ‘ac1b2’ and path ‘bc1b2’ lead to incompatible reports. Therefore, the actual
redistribution of player 1 is minω′∈�

{
x1

(
ω′) − e1

(
ω′)} = −0.2.
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Fig. 4 At player 2’s information sets

If player 2 is at I ′
2, then he must have seen the event b2 from nature.

Figure4b shows that telling the truth (reports b2) gives him a lower bound pay-

off of min {v2 (A1, b2; b) , v2 (c1, b2; b)} = min
{√

1.2,
√
0.8

}
= √

0.8; lying

(reports A2) gives him a lower bound payoff of min {v2 (A1, A2; b) , v2 (c1, A2; b)} =
min

{√
1,

√
0.8

}
= √

0.8. So when he observes the event b2, he has no incen-

tive to lie, i.e., s2 (b2) = b2 constitutes part of a maximin equilibrium of the
game.

Now, put together, the strategy profile s = (s1 (A1) = A1, s1 (c1) = c1; s2 (A2) =
A2, s2 (b2) = b2) is a maximin equilibrium of the game. It is, in fact, the only
maximin equilibrium of the game.12 The equilibrium report paths are s (a) =
(s1 (A1) , s2 (A2)) = (A1, A2), s (b) = (s1 (A1) , s2 (b2)) = (A1, b2) and s (c) =
(s1 (c1) , s2 (A2)) = (c1, A2), as marked in Fig. 2. It can be easily checked that
the maximin individually rational and ex ante maximin efficient allocation x is
implemented, since we have g1 (x − e, s (a) , a) = g1 (x − e, (A1, A2) , a) =
5 + 5 − 5 = 5 = x1 (a), and similarly, we have g2 (x − e, s (a) , a) =
5 = x2 (a) , g1 (x − e, s (b) , b) = 4.8 = x1 (b) , g2 (x − e, s (b) , b) = 1.2 =
x2 (b), g1 (x − e, s (c) , c) = 1.2 = x1 (c), g2 (x − e, s (c) , c) = 4.8 =
x2 (c). These outcomes are illustrated in Fig. 2, as pairs following the equilibrium
paths.

12 We assume that a player lies, only if he can benefit from doing so.
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5.3 Proof of theorem 1

To ease the explanation, we introduce some notations. We use F−i = × j �=iF j to
denote the action set of all the players except player i , and EF−i = (

EF1 , . . . , EFi−1 ,

EFi+1 , . . . , EFN
) ∈ F−i reports of all the players expect player i .

Furthermore, we write ω ∈ EF−i or EF−i (ω), if the state ω belongs to each
element in the list

(
EF1, . . . , EFi−1 , EFi+1 , . . . , EFN

)
; and we use EFi

⋂
EF−i =

⋂
j∈I EF j to denote the information revealed by the reports of all the players.
Let x be a maximin individually rational and ex ante maximin efficient allocation.

Suppose that themechanism	 does not have a truth tellingmaximin equilibrium.Then,
there must exist a player i , an event EFi and a lie ẼFi ∈ Fi (clearly, ẼFi �= EFi ),
such that when the player i observes the event EFi , he can ensure a better lower bound
payoff by lying, i.e.,

min
EF−i ∈F−i ;
ω′∈EFi

{
vi

(
EFi , EF−i ;ω′)}

< min
EF−i ∈F−i ;
ω′∈EFi

{
vi

(
ẼFi , EF−i ;ω′)}

. (5)

We will show, in Steps 1 and 2, that (5) cannot hold, and therefore every game 	 has
a truth telling maximin equilibrium.

To ease the explanation, denote the left-hand side of (5) by

vi

(
EFi , E∗−i ;ω∗) = min

EF−i ∈F−i ; ω′∈EFi

{
vi

(
EFi , EF−i ;ω′)}

,

where E∗−i ∈ F−i and ω∗ ∈ EFi solve the minimization problem above.

Step 1 We will show that if EFi ∩ E∗−i = {ω̃} for some ω̃, and (5) holds, then x
fails to be an ex ante maximin efficient allocation.

Clearly, ω̃ ∈ EFi , and we have

vi

(
EFi , E∗−i ;ω∗) = ui

(
ei

(
ω∗) + xi (ω̃) − ei (ω̃) ;ω∗) = ui

(
xi (ω̃) ;ω∗)

= ui (xi (ω̃) ; ω̃) ,

as the initial endowment ei and the utility function ui are Fi -measurable.
Notice that vi

(
EFi , E∗−i ;ω∗) = ui (xi (ω̃) ; ω̃) implies13

vi

(
EFi , E∗−i ;ω∗) = min

ω′∈EFi

{
vi

(
EFi , EF−i

(
ω′) ;ω′)}

. (6)

13 Notice that ω̃ ∈ EFi , and

vi

(
EFi , E∗−i ; ω∗)

= min
EF−i ∈F−i ;

ω′∈EFi

{
vi

(
EFi , EF−i ; ω′)}

≤ min
ω′∈EFi

{
vi

(
EFi , EF−i

(
ω′) ; ω′)}

≤ vi

(
EFi , EF−i (ω̃) ; ω̃

)
= ui (xi (ω̃) ; ω̃) ,

imply that we must have equality throughout.

123



Ambiguous implementation: the partition model 249

Also, (5) implies14

vi

(
EFi , E∗−i ;ω∗) < min

ω′∈EFi

{
vi

(
ẼFi , EF−i

(
ω′) ;ω′)}

. (7)

Now, (6) and (7) together imply

min
ω′∈EFi

{
vi

(
EFi , EF−i

(
ω′) ;ω′)}

< min
ω′∈EFi

{
vi

(
ẼFi , EF−i

(
ω′) ;ω′)}

. (8)

Finally, Lemma 1 (see below) shows that if (8) holds, then x fails to be an ex ante
maximin efficient allocation, which is a contradiction.

Step 2 We will show that if EFi ∩ E∗−i = ∅, then (5) cannot hold which is a

contradiction. Nowwe have vi
(
EFi , E∗−i ;ω∗) = ui

(
ei (ω∗) + xi

(
ω̂

) − ei
(
ω̂

) ;ω∗),
where ω̂ minimizes xi − ei . We show by Lemma 2 that

min
EF−i ∈F−i ;
ω′∈EFi

{
vi

(
ẼFi , EF−i ;ω′)}

= ui
(
ei

(
ω∗) + xi

(
ω̂

) − ei
(
ω̂

) ;ω∗) ,

for every ẼFi �= EFi . It follows that

min
EF−i ∈F−i ;
ω′∈EFi

{
vi

(
EFi , EF−i ;ω′)}

= min
EF−i ∈F−i ;
ω′∈EFi

{
vi

(
ẼFi , EF−i ;ω′)}

.

for every ẼFi �= EFi . That is, (5) does not hold.
Therefore, we conclude that the mechanism 	 has a truth telling maximin equilib-

rium, i.e., sT ∈ ME (	).
We now show that the truth telling maximin equilibrium is the only maximin equi-

librium of the mechanism 	, i.e.,
{
sT

} = ME (	). So suppose otherwise, that is,
suppose that both sT and s∗ are maximin equilibria of the mechanism 	, and sT �= s∗.

The truth telling strategy profile sT is different from the strategy profile s∗, which
implies that there must exist a player i and an event EFi , such that

sTi

(
EFi

)
= EFi �= ẼFi = s∗

i

(
EFi

)
. (9)

However, s∗
i

(
EFi

) = ẼFi �= EFi holds, only if lying makes player i strictly better
off upon observing the event EFi , i.e.,

14 Since by the definition of a minimum, we have that

min
EF−i ∈F−i ;

ω′∈EFi

{
vi

(
ẼFi , EF−i ; ω′)}

≤ min
ω′∈EFi

{
vi

(
ẼFi , EF−i

(
ω′) ; ω′)}

.

.
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min
EF−i ∈F−i ;
ω′∈EFi

{
vi

(
EFi , EF−i ;ω′)}

< min
EF−i ∈F−i ;
ω′∈EFi

{
vi

(
ẼFi , EF−i ;ω′)}

,

which contradicts to the fact that the truth telling strategy profile constitutes a maximin
equilibrium of the mechanism.

Clearly, the maximin individually rational and ex ante maximin efficient allocation
x is implemented. Indeed, under the truth telling strategy profile sT , the list of reports
associated to each state ω is

sT (ω) =
(
EF1 (ω) , . . . , EFN (ω)

)
.

That is, the players always tell the truth. As a consequence, we have

gi
(
x − e, sT (ω) , ω

)
= gi

(
x − e,

(
EF1 (ω) , . . . , EFN (ω)

)
, ω

)

= ei (ω) + Di

(
x − e,

(
EF1 (ω) , . . . , EFN (ω)

))

= ei (ω) + xi (ω) − ei (ω) = xi (ω) ,

for each ω ∈ � and for each i ∈ I—the requirement of Definition 11.

Lemma 1 Given a direct revelation mechanism 	 = 〈
I, S, x − e, {gi }i∈I , {vi }i∈I

〉
, if

the allocation x is maximin individually rational and ex ante maximin efficient, then
there do not exist a player i , an event EFi and a lie ẼFi ∈ Fi (clearly, ẼFi �= EFi ),
such that15

min
ω′∈EFi

{
vi

(
EFi , EF−i

(
ω′) ;ω′)}

< min
ω′∈EFi

{
vi

(
ẼFi , EF−i

(
ω′) ;ω′)}

. (10)

That is, for all i , given that all the other players tell the truth, it is optimal for player
i to tell the truth.16

Proof Suppose that there exist a player i , an event EFi and a lie ẼFi �= EFi , such
that (10) holds. We will show that the feasible allocation x fails to be ex ante efficient
under the maximin preferences. The idea is similar to the one in theorem 4.1 of de
Castro and Yannelis (2009).

Notice that for each ω′ ∈ EFi , we have

vi

(
EFi , EF−i

(
ω′) ;ω′) = ui

(
xi

(
ω′) ;ω′) ,

and therefore, the left-hand side of (10) can be rewritten as

min
ω′∈EFi

{
vi

(
EFi , EF−i

(
ω′) ;ω′)}

= min
ω′∈EFi

{
ui

(
xi

(
ω′) ;ω′)} .

15 In words, (10) says that if all the other players are truthful, then player i can ensure a higher lower bound
payoff by lying under the event EFi .
16 In other words, truth telling for all i turns out to be a fixed point.

123



Ambiguous implementation: the partition model 251

Define an i-allocation of player i , zi (·), such that for each ω′ ∈ EFi ,

vi

(
ẼFi , EF−i

(
ω′) ;ω′) = ui

(
zi

(
ω′) ;ω′) ,

and therefore, the right-hand side of (10) can be rewritten as

min
ω′∈EFi

{
vi

(
ẼFi , EF−i

(
ω′) ;ω′)}

= min
ω′∈EFi

{
ui

(
zi

(
ω′) ;ω′)} .

It follows from (10) that

min
ω′∈EFi

{
ui

(
xi

(
ω′) ;ω′)} < min

ω′∈EFi

{
ui

(
zi

(
ω′) ;ω′)} , (11)

which then implies that

for each ω′ ∈ arg min
ω

′′ ∈EFi

{
ui

(
xi

(
ω

′′) ;ω
′′)}

,

we have ui
(
xi

(
ω′) ;ω′) < ui

(
zi

(
ω′) ;ω′) . (12)

For (12) to hold, it must be the case that for each ω′ ∈ argmin
ω

′′ ∈EFi

{
ui

(
xi

(
ω

′′) ;
ω

′′)}
, there exists a state ω̃, such that

1. ẼFi ∩ EF−i
(
ω′) = {ω̃},

2. zi
(
ω′) = ei

(
ω′) + xi (ω̃) − ei (ω̃) �= xi

(
ω′).

Let
{
ω′, ω̃

}
denote a set, containing a stateω′ ∈ argmin

ω
′′ ∈EFi

{
ui

(
xi

(
ω

′′) ;ω
′′)}

and its corresponding17 ω̃. It follows by 1 above that, for each

ω′ ∈ arg min
ω

′′ ∈EFi

{
ui

(
xi

(
ω

′′) ;ω
′′)}

,

the set
{
ω′, ω̃

}
is a subset of EF−i

(
ω′).

Now, we are ready to define an allocation y that Pareto improves x under the
maximin preferences. Define for each j ∈ I , the j-allocation y j (·) by

y j (ω
′) =

{
z j

(
ω′) = e j

(
ω′) + x j (ω̃) − e j (ω̃) if ω′ ∈ argmin

ω
′′ ∈EFi

{
ui

(
xi

(
ω

′′) ; ω
′′)}

x j
(
ω′) otherwise.

Notice that the allocation y is feasible.

17 To avoid confusion, it isworthwhile to re-emphasize that differentω′ ∈ argmin
ω

′′ ∈EFi

{
ui

(
xi

(
ω

′′) ;
ω

′′)}
may be matched with a different ω̃.
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Indeed, for a state ω′ /∈ argmin
ω

′′ ∈EFi

{
ui

(
xi

(
ω

′′) ;ω
′′)}

, we have

∑

j∈I
y j

(
ω′) =

∑

j∈I
x j

(
ω′) =

∑

j∈I
e j

(
ω′) ;

and for a state ω′ ∈ argmin
ω

′′ ∈EFi

{
ui

(
xi

(
ω

′′) ;ω
′′)}

, we have

∑

j∈I
y j

(
ω′) =

∑

j∈I
z j

(
ω′) =

∑

j∈I
e j

(
ω′) +

∑

j∈I
x j (ω̃) −

∑

j∈I
e j (ω̃) =

∑

j∈I
e j

(
ω′)

(recall that x is a feasible allocation at the state ω̃).
From (12) and the definition of yi , we have

min
ω′∈EFi

{
ui

(
yi

(
ω′) ;ω′)} > min

ω′∈EFi

{
ui

(
xi

(
ω′) ;ω′)} (13)

under the event EFi ; and for any other event ÊFi ∈ Fi , we have

min
ω′∈ÊFi

{
ui

(
yi

(
ω′) ;ω′)} = min

ω′∈ÊFi

{
ui

(
xi

(
ω′) ;ω′)} .

Therefore, combined with the assumption onμi (·) (Assumption 2), we conclude that,
for the player i ,

∑

E∈Fi

(

min
ω′∈Ei

ui
(
yi

(
ω′) ;ω′)

)

μi (Ei ) >
∑

Ei∈Fi

(

min
ω′∈Ei

ui
(
xi

(
ω′) ;ω′)

)

μi (Ei ) .

(14)
Here we abuse the notations in (14) slightly, in particular, Ei denotes an arbitrary event
in Fi . That is, player i strictly prefers the i-allocation yi to the i-allocation xi under
the maximin preferences. Now, it remains to show that for any other player k �= i , we
have yk is preferred to xk under the maximin preferences.

Fix an arbitrary player k �= i , and an arbitrary event that player k may observe,
EFk ∈ Fk . Notice that if the event EFk contains a state

ω′ ∈ arg min
ω

′′ ∈EFi

{
ui

(
xi

(
ω

′′) ;ω
′′)}

,

then it contains the set
{
ω′, ω̃

}
. So, by the Fk-measurability of ek , we have

zk
(
ω′) = ek

(
ω′) + xk (ω̃) − ek (ω̃) = xk (ω̃). Now, for the event EFk , define

Xk = {
xk

(
ω′) : ω′ ∈ EFk

}
and Yk = {

yk
(
ω′) : ω′ ∈ EFk

}
. We have Yk ⊂ Xk .

Indeed, if ω′ ∈ EFk and ω′ ∈ argmin
ω

′′ ∈EFi

{
ui

(
xi

(
ω

′′) ;ω
′′)}

, then

yk
(
ω′) = zk

(
ω′) = xk (ω̃) ∈ Xk;
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and if ω′ ∈ EFk and ω′ /∈ argmin
ω

′′ ∈EFi

{
ui

(
xi

(
ω

′′) ;ω
′′)}

, then

yk
(
ω′) = xk

(
ω′) ∈ Xk .

Therefore, with Assumption 4, we have that

min
ω′∈EFk

{
uk

(
yk

(
ω′) ;ω′)} ≥ min

ω′∈EFk

{
uk

(
xk

(
ω′) ;ω′)} .

Since the event EFk ∈ Fk is arbitrary, we conclude that

∑

EFk∈Fk

(

min
ω′∈EFk

uk
(
yk

(
ω′) ;ω′)

)

μk

(
EFk

)

≥
∑

EFk∈Fk

(

min
ω′∈EFk

uk
(
xk

(
ω′) ;ω′)

)

μk

(
EFk

)
.

Also, since player k �= i is arbitrary, we have for every player k �= i , yk is preferred
to xk under the maximin preferences.

Thus, the feasible allocation y Pareto improves the allocation x under the maximin
preferences, i.e., x fails to be an ex antemaximin efficient allocation. This contradiction
completes the proof of Lemma 1. ��
Lemma 2 Let

vi

(
EFi , E∗−i ;ω∗) = min

EF−i ∈F−i ; ω′∈EFi

{
vi

(
EFi , EF−i ;ω′)}

.

If EFi ∩ E∗−i = ∅, then

min
EF−i ∈F−i ;
ω′∈EFi

{
vi

(
EFi , EF−i ;ω′)}

= min
EF−i ∈F−i ;
ω′∈EFi

{
vi

(
ẼFi , EF−i ;ω′)}

, (15)

for each ẼFi ∈ Fi .

Proof By construction, a player anticipates the worst net transfer in the case of
incompatible reports. Since EFi ∩ E∗−i = ∅, it follows that vi

(
EFi , E∗−i ;ω∗) =

ui
(
ei (ω∗) + xi

(
ω̂

) − ei
(
ω̂

) ;ω∗), where ω̂ ∈ argminω∈� {xi − ei }. Clearly, given a
ẼFi ∈ Fi and ẼFi �= EFi , if there exists a ẼF−i ∈ F−i such that ẼFi ∩ ẼF−i = ∅,
then by Assumptions 3 and 4, we have

min
EF−i ∈F−i ;
ω′∈EFi

{
vi

(
ẼFi , EF−i ;ω′)}

= ui
(
ei

(
ω∗) + xi

(
ω̂

) − ei
(
ω̂

) ;ω∗) .

123



254 L. I. de Castro et al.

That is, (15) holds in this case.
Now, suppose that there exists ẼFi �= EFi such that ẼFi is compatible with all

EF−i ∈ F−i . We will show that argminω∈� {xi − ei }∩ ẼFi is nonempty. Then, since
any state in ẼFi can be an agreed state, player i can end up with the same net transfer
as when the reports are not compatible. That is, (15) holds.

Assume otherwise, i.e., assume that argminω∈� {xi − ei } ∩ ẼFi = ∅. It fol-
lows that argminω∈� {xi − ei } �= �. Now define an allocation y. For each ω′ ∈
argminω∈� {xi − ei }, let y

(
ω′) = e

(
ω′) + x (ω̃) − e (ω̃), where {ω̃} = EF−i

(
ω′) ∩

ẼFi . Notice, ω̃ is well defined, since by construction ẼFi is compatible with all
EF−i ∈ F−i . Also notice that, for each ω′ ∈ argminω∈� {xi − ei }, we have
ui

(
ei

(
ω′′) + xi

(
ω′) − ei

(
ω′) ;ω′′) < ui

(
ei

(
ω′′) + xi (ω̃) − ei (ω̃) ;ω′′) for each

ω′′ ∈ �, since ω̃ ∈ ẼFi (i.e., ω̃ /∈ argminω∈� {xi − ei }), and ui is strictly monotone.
Now, for each ω′ /∈ argminω∈� {xi − ei }, let y

(
ω′) = x

(
ω′).

Clearly, the allocation y is feasible. Also, y Pareto improves x under the maximin
preferences. Indeed, at each ω′ ∈ argminω∈� {xi − ei }, we have

min
ω′′∈EFi (ω′)

ui
(
yi

(
ω′′) ;ω′) > min

ω′′∈EFi (ω′)
ui

(
xi

(
ω′′) ;ω′) .

At each ω′ with EFi
(
ω′) ∩ argminω∈� {xi − ei } = ∅, we have

min
ω′′∈EFi (ω′)

ui
(
yi

(
ω′′) ;ω′) = min

ω′′∈EFi (ω′)
ui

(
xi

(
ω′′) ;ω′) .

Combined with Assumption 2, yi gives player i a strictly higher ex ante maximin
payoff, i.e., player i strictly prefers yi to xi at ex ante under the maximin pref-
erences. Let j be an arbitrary player different from i . By construction, for each
ω′ ∈ argminω∈� {xi − ei }, its corresponding ω̃ is in the set EF−i

(
ω′). That is, player

j cannot distinguishω′ and its corresponding ω̃. By the same argument as in Lemma 1,
at each ω′ ∈ argminω∈� {xi − ei }, we have

min
ω′′∈EF j (ω′)

u j
(
y j

(
ω′′) ;ω′) ≥ min

ω′′∈EF j (ω′)
u j

(
x j

(
ω′′) ;ω′) .

At each ω′ with EF j
(
ω′) ∩ argminω∈� {xi − ei } = ∅, we have

min
ω′′∈EF j (ω′)

u j
(
y j

(
ω′′) ;ω′) = min

ω′′∈EF j (ω′)
u j

(
x j

(
ω′′) ;ω′) .

Combined with Assumption 2, player j prefers y j to x j at ex ante under the max-
imin preferences. Therefore, the allocation x is not ex ante maximin efficient. This
contradiction completes the proof of Lemma 2. ��
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6 Implementation in an economy with more than one good

In an economy with more than one good, the actual redistribution (Definition 13) of
Sect. 5 is not well defined. We need a new payout rule. Let x − e denote a planned
redistribution and

(
EF1 , . . . , EFN

)
a list of reports.

Definition 14 The actual redistribution of player i is given by

Di

(
x − e,

(
EF1 , . . . , EFN

))
=

⎧
⎨

⎩

xi (ω̃) − ei (ω̃) if ∩ j∈I EF j = {ω̃}

xi
(
ω̂

)−ei
(
ω̂

)
for some ω̂, if ∩ j∈I EF j =∅.

Now, whenever the players’ reports are not compatible, the mechanism designer (MD)
carries out a net transfers x

(
ω̂

) − e
(
ω̂

)
. The ω̂ is unknown to the players, when they

report events.
Being maximin, the players anticipate the worst. That is, for each i and EFi (ω),

player i anticipates the payoff18

min
ω′∈�

ui
(
ei (ω) + xi

(
ω′) − ei

(
ω′) ;ω

)
(16)

in the case of incompatible reports. Clearly, depending on the event player i observes,
he may associate different worst case scenario in the case of incompatible reports.
As the proof of our implementation result will indicate, the condition (16) works as a
threat which induces players not to deviate from reporting the true events.

6.1 Implementation

We show that each maximin individually rational and ex ante maximin efficient allo-
cation is implementable as a maximin equilibrium, as long as one of the following
three conditions holds.

Condition 1 The economy satisfiesAssumption 5 (This is the case studied by deCastro
et al. (2015)).

Condition 2 If incompatible reports can occur when a player tells the truth, then
incompatible reports can occur when he tells a lie. Formally, let ω be the realized
state of nature. If there exists EF−i ∈ F−i , such that EFi (ω) ∩ EF−i = ∅, then for
every ẼFi �= EFi (ω), there exists ẼF−i ∈ F−i , such that ẼFi ∩ ẼF−i = ∅.
Condition 3 Allocation x is a maximin individually rational and ex ante maximin
efficient allocation. For each i , the set Mi is not empty, where

Mi = {
ωm : ui

(
ei (ω) + xi

(
ωm) − ei

(
ωm)

, ω
) ≤

ui (ei (ω) + xi (ω̃) − ei (ω̃) , ω) for all ω, ω̃ ∈ �} .

18 Recall that both the initial endowment and the utility function are Fi -measurable.
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Condition 3 ensures that each player has a least preferred planned redistribution.

Remark 6 In the single good case, Condition 3 is automatically satisfied. Indeed, for
each i , the set Mi = argminω∈� {xi − ei } which is not empty. It follows that the
implementation results of the single good case requires no additional condition.

Theorem 2 Denote by x amaximin individually rational and ex antemaximin efficient
allocation in an economy with more than one good. Its corresponding direct revelation
mechanism	 = 〈

I, S, x − e, {gi }i∈I , {vi }i∈I
〉
has a truth telling maximin equilibrium

sT , which is the unique maximin equilibrium of the mechanism 	, if one of the three
conditions (Conditions 1, 2 and 3) holds.

Proof Condition 1 rules out the case of Step 2 which is in the proof of Theorem 1.
Therefore, the result follows from Step 1 and Lemma 1. See also de Castro et al.
(2015).

If an economy satisfies condition 2, the result follows from the proof of Theorem 1
and Lemma 1. The case in Step 2 (i.e., EFi ∩ E∗−i = ∅) of the proof of Theorem 1 can
occur, but condition 2 guarantees that in this case no lie can give the player a strictly
higher maximin payoff.

Finally, if an economy satisfies condition 3, then we can replace the state ω̂

in the Step 2 of the proof of Theorem 1 with an ωm ∈ Mi , and replace the set
argminω∈� {xi − ei } in Lemma 2 with the set Mi . Now, the implementation result
follows from the proof of Theorem 1, Lemma 1 and Lemma 2. ��

6.2 Counterexamples

Example 3 below shows that if all three conditions of Theorem 2 fail, then a maximin
individually rational and ex ante maximin efficient allocation may not be imple-
mentable in 	.

Example 3 There are two agents, I = {1, 2}, two goods, and six states
of nature � = {a, b, c, d, e, f }. The ex post utility function of agent 1
is u1

(
x1,1 (ω) , x1,2 (ω) ;ω

) = √
x1,1 (ω) + √

x1,2 (ω), ω ∈ {a, b, c, d, e},
and u1

(
x1,1 ( f ) , x1,2 ( f ) ; f

) = 0.5
√
x1,1 ( f ) + 2

√
x1,2 ( f ), where the sec-

ond index refers to the good. The ex post utility function of agent 2 is
u2

(
x2,1 (ω) , x2,2 (ω) ;ω

) = √
x2,1 (ω) + √

x2,2 (ω), ω ∈ {a, c, e, f }, and
u2

(
x2,1 (ω) , x2,2 (ω) ;ω

) = 1.01
√
x2,1 (ω) + √

x2,2 (ω), ω ∈ {b, d}. The
agents’ random initial endowments, information partitions and multi-prior sets
are: e1 (ω) = (10, 10) for all ω; e2 (ω) = (10, 10) for ω ∈ {a, b, c, d}; and
e2 (ω) = (11, 9) for ω ∈ {e, f }.

F1 = {{a, b} , {c, d, e} , { f }} ; F2 = {{a, c} , {b, d} , {e, f }} .

P1 =
{

probability measure π1 : 2� → [0, 1] | π1 ({a, b}) = π1 ({c, d, e}) = π1 ({ f }) = 1

3

}

.

P2 =
{

probability measure π2 : 2� → [0, 1] | π2 ({a, c}) = π2 ({b, d}) = π2 ({e, f }) = 1

3

}

.
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A maximin individually rational and ex ante maximin efficient allocation is

x =
(
x1 (a) x1 (b) x1 (c) x1 (d) x1 (e) x1 ( f )
x2 (a) x2 (b) x2 (c) x2 (d) x2 (e) x2 ( f )

)

=
(

(10, 10) (9.950311, 10.049813) (10, 10) (9.99, 10) (10.5, 9.5) (3.469, 14.439)
(10, 10) (10.049689, 9.950187) (10, 10) (10.01, 10) (10.5, 9.5) (17.531, 4.561)

)

.

This example does not satisfy any of the three conditions of Theorem 2. It turns
out that the mechanism 	 has a unique maximin equilibrium, in which player 1
(agent 1) lieswhenhe is in the event {a, b},19 andplayer 2 (agent 2) always reports
the true event. That is, s1 ({a, b}) = s1 ({c, d, e}) = {c, d, e}, s1 ({ f }) = { f },
s2 ({a, c}) = {a, c}, s2 ({b, d}) = {b, d}, s2 ({e, f }) = {e, f } constitute the
uniquemaximin equilibrium. For each i andω, let yi (ω) = gi (x − e, s (ω) , ω).
That is, the allocation y is realized through the unique maximin equilibrium:

y =
(
y1 (a) y1 (b) y1 (c) y1 (d) y1 (e) y1 ( f )
y2 (a) y2 (b) y2 (c) y2 (d) y2 (e) y2 ( f )

)

=
(

(10, 10) (9.99, 10) (10, 10) (9.99, 10) (10.5, 9.5) (3.469, 14.439)
(10, 10) (10.01, 10) (10, 10) (10.01, 10) (10.5, 9.5) (17.531, 4.561)

)

.

Clearly, the allocation y differs from x . That is, the allocation x is not imple-
mented.

However, the three conditions of Theorem 2 are not necessary. The following exam-
ple does not satisfy any of the three conditions, and its maximin individually rational
and ex ante maximin efficient allocation is implementable.

Example 4 There are two agents, I = {1, 2}, two goods, and three states of
nature� = {a, b, c}. The expost utility functionof agent 1 isu1

(
x1,1 (ω) , x1,2 (ω) ;

ω) = √
x1,1 (ω) + 2

√
x1,2 (ω), for all ω, where the second index refers to the

good. The ex post utility function of agent 2 is u2
(
x2,1 (ω) , x2,2 (ω) ;ω

) =

19 When player 1 is in the event {a, b}, the worst net transfer for him is x1 ( f ) − e1 ( f ). He may get the
worst transfer if the players’ reports are not compatible, or if the agreed state is f . The lie {c, d, e} allows
him to avoid the worst net transfer, and gives him the highest lower bound payoff. Indeed, reporting {a, b}
gives him a payoff of

min {v1 ({a, b} , {a, c} ; a) , v1 ({a, b} , {b, d} ; a) , v1 ({a, b} , {e, f } ; a) ,

v1 ({a, b} , {a, c} ; b) , v1 ({a, b} , {b, d} ; b) , v1 ({a, b} , {e, f } ; b)}
= min {6.32455, 6.32455, 5.66239, 6.32455, 6.32455, 5.66239} = 5.66239;

reporting {c, d, e} gives him a payoff of

min {6.32455, 6.32297, 6.32258, 6.32455, 6.32297, 6.32258} = 6.32258;
and reporting { f } gives him a payoff of

min {5.66239, 5.66239, 5.66239, 5.66239, 5.66239, 5.66239} = 5.66239.

Clearly, the payoff of reporting {c, d, e} is the highest.
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2
√
x2,1 (ω) + √

x2,2 (ω), for all ω. The agents’ random initial endowments,
information partitions and multi-prior sets are:

(e1 (a) , e1 (b) , e1 (c)) = ((8, 8) , (10, 2) , (10, 2)) ; F1 = {{a} , {b, c}}
(e2 (a) , e2 (b) , e2 (c)) = ((4, 8) , (4, 8) , (15, 6)) ; F2 = {{a, b} , {c}}
P1 =

{

probability measure π1 : 2� → [0, 1] | π1 ({a}) = π1 ({b, c}) = 1

2

}

.

P2 =
{

probability measure π2 : 2� → [0, 1] | π2 ({a, b}) = π2 ({c}) = 1

2

}

.

A maximin individually rational and ex ante maximin efficient allocation is

x =
(
x1 (a) x1 (b) x1 (c)
x2 (a) x2 (b) x2 (c)

)

=
(

(2.4, 12.8) (2.8, 8) (5, 6.4)
(9.6, 3.2) (11.2, 2) (20, 1.6)

)

.

This example does not satisfy any of the three conditions of Theorem 2. It turns
out that themechanism	 has a uniquemaximin equilibrium, inwhich the players
(agents 1 and2) always report the true event. That is, s1 ({a}) = {a} , s1 ({b, c}) =
{b, c}, s2 ({a, b}) = {a, b}, s2 ({c}) = {c} constitute the unique maximin equi-
librium. Consequently, the allocation x is realized through the unique maximin
equilibrium.

6.3 The case of state-independent linear ex post utility functions

To assume linear ex post utility functions is a rather strong assumption, but in this case
no additional assumption is needed for implementation in an �-goods economy.

Corollary 1 Each maximin individually rational and ex ante maximin efficient allo-
cation x is implementable as a maximin equilibrium in an �-goods economy20

with state-independent linear ex post utility functions, i.e., for each i and ω,
ui (ci ;ω) = ∑�

k=1 αkcki . That is, its corresponding direct revelation mechanism
	 = 〈

I, S, x − e, {gi }i∈I , {vi }i∈I
〉
has a truth telling maximin equilibrium sT , which

is the unique maximin equilibrium of the mechanism 	.

Proof If � = 1, Corollary 1 follows immediately from Theorem 1. We look into the
case of � > 1. Let x be a maximin individually rational and ex ante maximin efficient
allocation, and let x − e be its corresponding planned redistribution.

At state ω, if the actual redistribution is x
(
ω̂

)−e
(
ω̂

)
, then player i’s ex post utility

is

20 Assumption 1 is assumed instead of Assumption 5.
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ui
(
ei (ω) + xi

(
ω̂

) − ei
(
ω̂

) ;ω
) =

�∑

k=1

αk

[
eki (ω) + xki

(
ω̂

) − eki
(
ω̂

)]

=
�∑

k=1

αke
k
i (ω) +

�∑

k=1

αk

[
xki

(
ω̂

) − eki
(
ω̂

)]
.

(17)

Let
∑�

k=1 αk
[
xki (ω∗) − eki (ω∗)

] = min
{∑�

k=1 αk
[
xki

(
ω̂

) − eki
(
ω̂

)] : ω̂ ∈ �
}
.

Clearly, for all ω, xi (w∗) − ei (w∗) is player i’s least preferred planned redistribution.
It follows that

ω∗ ∈ Mi = {
ωm : ui

(
ei (ω) + xi

(
ωm) − ei

(
ωm)

, ω
) ≤

ui (ei (ω) + xi (ω̃) − ei (ω̃) , ω) for all ω, ω̃ ∈ �} .

Also, since i is arbitrary, we have for each i , the set Mi is not empty. That is, Con-
dition 3 holds. Now, it follows from Theorem 2 that the direct revelation mechanism
	 = 〈

I, S, x − e, {gi }i∈I , {vi }i∈I
〉
has a truth telling maximin equilibrium sT , which

is the unique maximin equilibrium of the mechanism 	. That is, x is implementable
as a maximin equilibrium. ��

7 Concluding remarks

We introduce conditions under which each maximin individually rational and ex ante
maximin efficient allocation is implementable by means of noncooperative behav-
ior under ambiguity. That is, any arbitrary maximin individually rational and ex
ante maximin efficient allocation x can be reached through the mechanism 	 =〈
I, S, x − e, {gi }i∈I , {vi }i∈I

〉
as its unique maximin equilibrium outcome.

In particular, we show that each maximin individually rational and ex ante maximin
efficient allocation is implementable in a single good economy. These allocations are
implementable in a multi-goods economy, provided that at least one of the three
sufficient conditions in Theorem 2 is satisfied. Furthermore, if the agents have state-
independent linear ex post utility functions, then each maximin individually rational
and ex ante maximin efficient allocation is implementable in a multi-goods economy.

Our implementation results depend on the payoff rules of the direct revelation
mechanism. In particular, we include the players’ net transfers (redistribution) when
their reports are not compatible. We assume that the players associate incompatible
reports with the worst planned net transfer, i.e., we impose a ‘punishment’ whenever
the reports are not compatible. The threat of a ‘punishment’ by themechanismdesigner
induces truthful reports. It is an open question, whether altering the payoff rules one
can make each maximin individually rational and ex ante maximin efficient allocation
implementable in a multi-goods economy. Changing our ‘punishment’ to ‘no trade’
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21 does not help. In particular, the allocation of Example 3 is not implementable under
the ‘no trade’ rule. Furthermore, it follows from our proofs that if the mechanism
designer knows the realized state of nature ω in the interim,22 and carries out the
correct planned net transfer x (ω) − e (ω) whenever the reports are not compatible,
then each maximin individually rational and ex ante maximin efficient allocation is
implementable.
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