Luciano I de Castro

Luciano I de Castro

This paper develops a model for optimal portfolio allocation for an investor with quantile preferences, i.e., who maximizes the τ-quantile of the portfolio return, for τ ∈ (0,1). Quantile preferences allow to study heterogeneity in individuals’ portfolio choice by varying the quantiles, and have a solid axiomatic foundation. Their associated risk attitude is captured entirely by a single dimensional parameter (the quantile τ), instead of the utility function. We formally establish the properties of the quantile model. The presence of a risk-free asset in the portfolio produces an all-or-nothing optimal response to the risk-free asset that depends on investors’ quantile preference. In addition, when both assets are risky, we derive conditions under which the optimal portfolio decision has an interior solution that guarantees diversification vis-\`a-vis fully investing in a single risky asset. We also derive conditions under which the optimal portfolio decision is characterized by two regions: full diversification for quantiles below the median and no diversification for upper quantiles. These results are illustrated in an exhaustive simulation study and an empirical application using a tactical portfolio of stocks, bonds and a risk-free asset. The results show heterogeneity in portfolio diversification across risk attitudes.



Keywords:

Optimal asset allocation, Expected Utility, Quantile Utility, Portfolio Theory, Risk Attitude

JEL Classification:

G11

de Castro, Luciano I. and Galvao, Antonio F. and Montes-Rojas, Gabriel and Olmo, Jose, Portfolio Selection in Quantile Decision Models, Annals of Finance, 2022, 18, 133-181.
All projects